Suppr超能文献

CDC 样激酶 4 缺乏通过调节 NEXN 磷酸化导致病理性心肌肥厚。

CDC-like kinase 4 deficiency contributes to pathological cardiac hypertrophy by modulating NEXN phosphorylation.

机构信息

Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.

Key Laboratory of Arrhythmias of the Ministry of Education of China, Tongji University School of Medicine, Shanghai, 200120, China.

出版信息

Nat Commun. 2022 Jul 30;13(1):4433. doi: 10.1038/s41467-022-31996-9.

Abstract

Kinase-catalyzed phosphorylation plays a crucial role in pathological cardiac hypertrophy. Here, we show that CDC-like kinase 4 (CLK4) is a critical regulator of cardiomyocyte hypertrophy and heart failure. Knockdown of Clk4 leads to pathological cardiomyocyte hypertrophy, while overexpression of Clk4 confers resistance to phenylephrine-induced cardiomyocyte hypertrophy. Cardiac-specific Clk4-knockout mice manifest pathological myocardial hypertrophy with progressive left ventricular systolic dysfunction and heart dilation. Further investigation identifies nexilin (NEXN) as the direct substrate of CLK4, and overexpression of a phosphorylation-mimic mutant of NEXN is sufficient to reverse the hypertrophic growth of cardiomyocytes induced by Clk4 knockdown. Importantly, restoring phosphorylation of NEXN ameliorates myocardial hypertrophy in mice with cardiac-specific Clk4 deletion. We conclude that CLK4 regulates cardiac function through phosphorylation of NEXN, and its deficiency may lead to pathological cardiac hypertrophy. CLK4 is a potential intervention target for the prevention and treatment of heart failure.

摘要

激酶催化的磷酸化在病理性心肌肥厚中起着至关重要的作用。在这里,我们表明 CDC 样激酶 4 (CLK4) 是心肌肥厚和心力衰竭的关键调节因子。CLK4 的敲低导致病理性心肌肥厚,而过表达 CLK4 则赋予对苯肾上腺素诱导的心肌肥厚的抗性。心脏特异性 Clk4 敲除小鼠表现出病理性心肌肥厚,伴有进行性左心室收缩功能障碍和心脏扩张。进一步的研究确定 nexilin (NEXN) 是 CLK4 的直接底物,过表达 NEXN 的磷酸化模拟突变体能充分逆转 Clk4 敲低诱导的心肌细胞肥大。重要的是,恢复 NEXN 的磷酸化可改善心脏特异性 Clk4 缺失小鼠的心肌肥厚。我们得出结论,CLK4 通过磷酸化 NEXN 来调节心脏功能,其缺乏可能导致病理性心肌肥厚。CLK4 是预防和治疗心力衰竭的潜在干预靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b6e/9338968/3262aa960240/41467_2022_31996_Fig1_HTML.jpg

相似文献

3
Nexilin Is Necessary for Maintaining the Transverse-Axial Tubular System in Adult Cardiomyocytes.
Circ Heart Fail. 2020 Jul;13(7):e006935. doi: 10.1161/CIRCHEARTFAILURE.120.006935. Epub 2020 Jul 8.
4
SWAP70 Overexpression Protects Against Pathological Cardiac Hypertrophy in a TAK1-Dependent Manner.
J Am Heart Assoc. 2023 Apr 4;12(7):e028628. doi: 10.1161/JAHA.122.028628. Epub 2023 Mar 28.
5
STEAP3 (Six-Transmembrane Epithelial Antigen of Prostate 3) Inhibits Pathological Cardiac Hypertrophy.
Hypertension. 2020 Oct;76(4):1219-1230. doi: 10.1161/HYPERTENSIONAHA.120.14752. Epub 2020 Aug 31.
6
Tumor necrosis factor receptor-associated factor 3 is a positive regulator of pathological cardiac hypertrophy.
Hypertension. 2015 Aug;66(2):356-67. doi: 10.1161/HYPERTENSIONAHA.115.05469. Epub 2015 Jun 1.
7
Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload.
Am J Physiol Heart Circ Physiol. 2019 Jan 1;316(1):H145-H159. doi: 10.1152/ajpheart.00029.2018. Epub 2018 Oct 26.
8
The E3 Ligase TRIM16 Is a Key Suppressor of Pathological Cardiac Hypertrophy.
Circ Res. 2022 May 13;130(10):1586-1600. doi: 10.1161/CIRCRESAHA.121.318866. Epub 2022 Apr 19.
9
Determining the absolute requirement of G protein-coupled receptor kinase 5 for pathological cardiac hypertrophy: short communication.
Circ Res. 2012 Sep 28;111(8):1048-53. doi: 10.1161/CIRCRESAHA.112.273367. Epub 2012 Aug 2.
10
The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy.
Cardiovasc Res. 2016 Jul 1;111(1):56-65. doi: 10.1093/cvr/cvw078. Epub 2016 Apr 15.

引用本文的文献

1
Nexilin in cardiomyopathy: unveiling its diverse roles with special focus on endocardial fibroelastosis.
Heart Fail Rev. 2024 Sep;29(5):1025-1037. doi: 10.1007/s10741-024-10416-8. Epub 2024 Jul 10.
2
Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders.
FEBS Lett. 2023 Oct;597(19):2375-2415. doi: 10.1002/1873-3468.14723. Epub 2023 Sep 4.
3
Targeting pre-mRNA splicing in cancers: roles, inhibitors, and therapeutic opportunities.
Front Oncol. 2023 Jun 5;13:1152087. doi: 10.3389/fonc.2023.1152087. eCollection 2023.
4
Cdc2-like kinases: structure, biological function, and therapeutic targets for diseases.
Signal Transduct Target Ther. 2023 Apr 7;8(1):148. doi: 10.1038/s41392-023-01409-4.
5
Silicate Ions Derived from Calcium Silicate Extract Decelerate Ang II-Induced Cardiac Remodeling.
Tissue Eng Regen Med. 2023 Aug;20(5):671-681. doi: 10.1007/s13770-023-00523-2. Epub 2023 Mar 15.

本文引用的文献

1
CaMKII-δ9 promotes cardiomyopathy through disrupting UBE2T-dependent DNA repair.
Nat Cell Biol. 2019 Sep;21(9):1152-1163. doi: 10.1038/s41556-019-0380-8. Epub 2019 Sep 2.
2
Nexilin Is a New Component of Junctional Membrane Complexes Required for Cardiac T-Tubule Formation.
Circulation. 2019 Jul 2;140(1):55-66. doi: 10.1161/CIRCULATIONAHA.119.039751. Epub 2019 Apr 15.
3
The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis.
Nat Commun. 2019 Jan 2;10(1):6. doi: 10.1038/s41467-018-07858-8.
4
Mechanisms of physiological and pathological cardiac hypertrophy.
Nat Rev Cardiol. 2018 Jul;15(7):387-407. doi: 10.1038/s41569-018-0007-y.
6
Minimally Invasive Transverse Aortic Constriction in Mice.
J Vis Exp. 2017 Mar 14(121):55293. doi: 10.3791/55293.
8
CLK2 Is an Oncogenic Kinase and Splicing Regulator in Breast Cancer.
Cancer Res. 2015 Apr 1;75(7):1516-26. doi: 10.1158/0008-5472.CAN-14-2443. Epub 2015 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验