Chen Mingyu, Liu Ying, Fan Jiayao, Liu Bingxue, Shi Naien, Lin Yue, Li Xianzeng, Song Wenqi, Xu Dongdong, Xu Xiangxing, Han Min
Jiangsu Key Laboratory of New Power Batteries, And Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China.
Fujian Cross Strait Institute of Flexible Electronics (Future Technology), Fujian Normal University, Fuzhou, 350117, P. R. China.
Small. 2022 Aug;18(34):e2203042. doi: 10.1002/smll.202203042. Epub 2022 Jul 31.
Transition metal nitrides (TMNs) nanostructures possess distinctive electronic, optical, and catalytic properties, showing great promise to apply in clean energy, optoelectronics, and catalysis fields. Nonetheless, phase-regulation of NiFe-bimetallic nitrides nanocrystals or nanohybrid architectures confronts challenges and their electrocatalytic overall water splitting (OWS) performances are underexplored. Herein, novel pure-phase Ni Fe N nanocrystals armored with amorphous N-doped carbon (NC) nanoparticles nanocubes (NPNCs) are obtained by controllable nitridation of NiFe-Prussian-blue analogues derived oxides/NC NPNCs under Ar/NH atmosphere. Such Ni Fe N/NC NPNCs possess mesoporous structures and show enhanced electrocatalytic activity in 1 m KOH electrolyte with the overpotential of 101 and 270 mV to attain 10 and 50 mA cm current toward hydrogen and oxygen evolution reactions, outperforming their counterparts (mixed-phase NiFe O /Ni FeN/NC and NiFe oxides/NC NPNCs). Remarkably, utilizing them as bifunctional catalysts, the assembled Ni Fe N/NC||Ni Fe N/NC electrolyzer only needs 1.51 V cell voltage for driving OWS to approach 10 mA cm water-splitting current, exceeding their counterparts and the-state-of-art reported bifunctional catalysts-based devices, and Pt/C||IrO couples. Additionally, the Ni Fe N/NC||Ni Fe N/NC manifests excellent durability for OWS. The findings presented here may spur the development of advanced TMNs nanostructures by combining phase, structure engineering, and hybridization strategies and stimulate their applications toward OWS or other clean energy fields.
过渡金属氮化物(TMNs)纳米结构具有独特的电子、光学和催化性能,在清洁能源、光电子学和催化领域展现出巨大的应用潜力。然而,镍铁双金属氮化物纳米晶体或纳米杂化结构的相调控面临挑战,其电催化全水分解(OWS)性能尚未得到充分探索。在此,通过在氩气/氨气气氛下对镍铁普鲁士蓝类似物衍生的氧化物/NC纳米立方体(NPNCs)进行可控氮化,获得了由非晶态氮掺杂碳(NC)纳米颗粒包裹的新型纯相NiFeN纳米晶体(NPNCs)。这种NiFeN/NC NPNCs具有介孔结构,在1 m KOH电解液中表现出增强的电催化活性,在析氢和析氧反应中,过电位分别为101和270 mV时可达到10和50 mA cm的电流,优于其同类物(混合相NiFeO/NiFeN/NC和NiFe氧化物/NC NPNCs)。值得注意的是,将它们用作双功能催化剂时,组装的NiFeN/NC||NiFeN/NC电解槽驱动OWS达到10 mA cm的水分解电流仅需1.51 V的电池电压,超过了其同类物以及已报道的基于最先进双功能催化剂的器件和Pt/C||IrO对。此外,NiFeN/NC||NiFeN/NC在OWS方面表现出优异的耐久性。本文的研究结果可能会通过结合相、结构工程和杂化策略推动先进TMNs纳米结构的发展,并促进它们在OWS或其他清洁能源领域的应用。