Suppr超能文献

蒙特卡罗模拟与重建:使用连续采集的伽马相机评估因变形和呼吸导致心脏运动时示踪剂动力学的心肌灌注成像

Monte Carlo Simulation and Reconstruction: Assessment of Myocardial Perfusion Imaging of Tracer Dynamics With Cardiac Motion Due to Deformation and Respiration Using Gamma Camera With Continuous Acquisition.

作者信息

Huh Yoonsuk, Shrestha Uttam M, Gullberg Grant T, Seo Youngho

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.

出版信息

Front Cardiovasc Med. 2022 Jul 13;9:871967. doi: 10.3389/fcvm.2022.871967. eCollection 2022.

Abstract

PURPOSE

Myocardial perfusion imaging (MPI) with single photon emission computed tomography (SPECT) is routinely used for stress testing in nuclear medicine. Recently, our group extended its potential going from 3D visual qualitative image analysis to 4D spatiotemporal reconstruction of dynamically acquired data to capture the time variation of the radiotracer concentration and the estimated myocardial blood flow (MBF) and coronary flow reserve (CFR). However, the quality of reconstructed image is compromised due to cardiac deformation and respiration. The work presented here develops an algorithm that reconstructs the dynamic sequence of separate respiratory and cardiac phases and evaluates the algorithm with data simulated with a Monte Carlo simulation for the continuous image acquisition and processing with a slowly rotating SPECT camera.

METHODS

A clinically realistic Monte Carlo (MC) simulation is developed using the 4D Extended Cardiac Torso (XCAT) digital phantom with respiratory and cardiac motion to model continuous data acquisition of dynamic cardiac SPECT with slowly rotating gamma cameras by incorporating deformation and displacement of the myocardium due to cardiac and respiratory motion. We extended our previously developed 4D maximum-likelihood expectation-maximization (MLEM) reconstruction algorithm for a data set binned from a continuous list mode (LM) simulation with cardiac and respiratory information. Our spatiotemporal image reconstruction uses splines to explicitly model the temporal change of the tracer for each cardiac and respiratory gate that delineates the myocardial spatial position as the tracer washes in and out. Unlike in a fully list-mode data acquisition and reconstruction the accumulated photons are binned over a specific but very short time interval corresponding to each cardiac and respiratory gate. Reconstruction results are presented showing the dynamics of the tracer in the myocardium as it continuously deforms. These results are then compared with the conventional 4D spatiotemporal reconstruction method that models only the temporal changes of the tracer activity. Mean Stabilized Activity (MSA), signal to noise ratio (SNR) and Bias for the myocardium activities for three different target-to-background ratios (TBRs) are evaluated. Dynamic quantitative indices such as wash-in (K) and wash-out (k) rates at each gate were also estimated.

RESULTS

The MSA and SNR are higher with higher TBRs while biases were improved with higher TBRs to less than 10%. The correlation between exhalation-inhalation sequence with the ground truth during respiratory cycle was excellent. Our reconstruction method showed better resolved myocardial walls during diastole to systole as compared to the ungated 4D image. Estimated values of K and k were also consistent with the ground truth.

CONCLUSION

The continuous image acquisition for dynamic scan using conventional two-head gamma cameras can provide valuable information for MPI. Our study demonstrated the viability of using a continuous image acquisition method on a widely used clinical two-head SPECT system. Our reconstruction method showed better resolved myocardial walls during diastole to systole as compared to the ungated 4D image. Precise implementation of reconstruction algorithms, better segmentation techniques by generating images of different tissue types and background activity would improve the feasibility of the method in real clinical environment.

摘要

目的

单光子发射计算机断层扫描(SPECT)心肌灌注成像(MPI)常用于核医学中的负荷试验。最近,我们团队拓展了其潜力,从三维视觉定性图像分析发展到对动态采集数据进行四维时空重建,以捕捉放射性示踪剂浓度的时间变化以及估计心肌血流量(MBF)和冠状动脉血流储备(CFR)。然而,由于心脏变形和呼吸作用,重建图像的质量受到影响。本文介绍的工作开发了一种算法,该算法可重建单独的呼吸和心脏相位的动态序列,并使用蒙特卡罗模拟进行数据模拟,以评估该算法在连续图像采集和使用慢速旋转SPECT相机进行处理方面的性能。

方法

使用具有呼吸和心脏运动的四维扩展心脏躯干(XCAT)数字体模开发了一种临床逼真的蒙特卡罗(MC)模拟,通过纳入由于心脏和呼吸运动导致的心肌变形和位移,对使用慢速旋转伽马相机进行动态心脏SPECT的连续数据采集进行建模。我们将先前开发的四维最大似然期望最大化(MLEM)重建算法扩展到用于从具有心脏和呼吸信息的连续列表模式(LM)模拟中进行数据集分箱。我们的时空图像重建使用样条来明确模拟每个心脏和呼吸门控下示踪剂的时间变化,该变化描绘了随着示踪剂进出心肌的空间位置。与完全列表模式数据采集和重建不同,累积光子在对应于每个心脏和呼吸门控的特定但非常短的时间间隔内进行分箱。展示了重建结果,显示了示踪剂在心肌中连续变形时的动态变化。然后将这些结果与仅对示踪剂活性的时间变化进行建模的传统四维时空重建方法进行比较。评估了三种不同靶本比(TBR)下心肌活性的平均稳定活性(MSA)、信噪比(SNR)和偏差。还估计了每个门控下的动态定量指标,如流入(K)和流出(k)率。

结果

TBR越高,MSA和SNR越高,偏差在TBR较高时改善至小于10%。呼气 - 吸气序列与呼吸周期中真实情况之间的相关性极佳。与非门控四维图像相比,我们的重建方法在舒张期到收缩期显示出更好分辨的心肌壁。K和k的估计值也与真实情况一致。

结论

使用传统双头伽马相机进行动态扫描的连续图像采集可为MPI提供有价值的信息。我们的研究证明了在广泛使用的临床双头SPECT系统上使用连续图像采集方法的可行性。与非门控四维图像相比,我们的重建方法在舒张期到收缩期显示出更好分辨的心肌壁。精确实施重建算法、通过生成不同组织类型和背景活性的图像进行更好的分割技术将提高该方法在实际临床环境中的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45ae/9326051/d30190ad92bd/fcvm-09-871967-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验