Suppr超能文献

3D 分层 CoFeS-FeCoO/N-CNTs@CF 具有增强的微生物-阳极界面,可提高微生物燃料电池性能。

3D Hierarchical CoFeS-FeCoO/N-CNTs@CF with an Enhanced Microorganisms-Anode Interface for Improving Microbial Fuel Cell Performance.

机构信息

School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92 West Dazhi Street, Nan Gang District, Harbin 150001, People's Republic of China.

College of Chemistry, Northeast Forestry University, Harbin 150040, PR China.

出版信息

ACS Appl Mater Interfaces. 2022 Aug 10;14(31):35809-35821. doi: 10.1021/acsami.2c09622. Epub 2022 Jul 30.

Abstract

Microbial fuel cells (MFCs) are promising ecofriendly techniques for harvesting bioenergy from organic and inorganic matter. Currently, it is challenging to design MFC anodes with favorable microorganism attachment and fast extracellular electron transfer (EET) rate for high MFC performance. Here we prepared N-doped carbon nanotubes (NCNTs) on carbon felt (CF) and used it as a support for growing hierarchical CoFeS-FeCoO/NCNTs core-shell nanostructures (FeCo/NCNTs@CF). We observed improved wettability, specific areal capacitance, and diffusion coefficient, as well as small charge transfer resistance compared with bare CF. MFCs equipped with FeCo/NCNTs@CF displayed a power density of 3.04 W/m and COD removal amount of 221.0 mg/L/d, about 47.6 and 290.1% improvements compared with that of CF. Biofilm morphology and 16s rRNA gene sequence analysis proved that our anode facilitated the enrichment growth of exoelectrogens. Flavin secretion was also promoted on our hierarchical elelctrode, effectively driving the EET process. This work disclosed that hierarchical nanomaterials modified electrode with tailored physicochemical properties is a promising platform to simultaneously enhance exoelectrogen attachment and EET efficiency for MFCs.

摘要

微生物燃料电池(MFC)是从有机和无机物质中收获生物能源的有前途的环保技术。目前,设计具有良好微生物附着和快速细胞外电子转移(EET)速率的 MFC 阳极以实现高 MFC 性能具有挑战性。在这里,我们在碳纤维毡(CF)上制备了氮掺杂碳纳米管(NCNT),并将其用作生长分层 CoFeS-FeCoO/NCNT 核壳纳米结构(FeCo/NCNTs@CF)的支撑体。与裸 CF 相比,我们观察到改进的润湿性、比表面积电容和扩散系数,以及较小的电荷转移电阻。装有 FeCo/NCNTs@CF 的 MFC 显示出 3.04 W/m 的功率密度和 221.0 mg/L/d 的 COD 去除量,分别比 CF 提高了 47.6%和 290.1%。生物膜形态和 16s rRNA 基因序列分析证明我们的阳极有利于外源电子菌的富集生长。在我们的分层电极上也促进了黄素的分泌,有效地驱动了 EET 过程。这项工作揭示了具有定制物理化学性质的分层纳米材料修饰电极是一种很有前途的平台,可以同时提高 MFC 的外电子菌附着和 EET 效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验