Suppr超能文献

一种新的量子安全多元多项式公钥数字签名算法。

A new quantum-safe multivariate polynomial public key digital signature algorithm.

作者信息

Kuang Randy, Perepechaenko Maria, Barbeau Michel

机构信息

Quantropi Inc., Ottawa, Ontario, K1Z 8P8, Canada.

School of Computer Science, Carleton University, Ottawa, K1S 5B6, Canada.

出版信息

Sci Rep. 2022 Aug 1;12(1):13168. doi: 10.1038/s41598-022-15843-x.

Abstract

We propose a new quantum-safe digital signature algorithm called Multivariate Polynomial Public Key Digital Signature (MPPK/DS). The core of the algorithm is based on the modular arithmetic property that for a given element g, greater than equal to two, in a prime Galois field GF(p) and two multivariate polynomials P and Q, if P is equal to Q modulo p-1, then g to the power of P is equal to g to the power of Q modulo p. MPPK/DS is designed to withstand the key-only, chosen-message, and known-message attacks. Most importantly, making secret the element g disfavors quantum computers' capability to solve the discrete logarithm problem. The security of the MPPK/DS algorithm stems from choosing a prime p associated with the field GF(p), such that p is a sum of a product of an odd prime number q multiplied with a power x of two and one. Given such a choice of a prime, choosing even coefficients of the publicly available polynomials makes it hard to find any private information modulo p-1. Moreover, it makes it exponentially hard to lift the solutions found modulo q to the ring of integers modulo p-1 by properly arranging x and q. However, finding private information modulo the components q and power x of two is an NP-hard problem since it involves solving multivariate equations over the chosen finite field. The time complexity of searching a private key from a public key or signatures is exponential over GF(p). The time complexity of perpetrating a spoofing attack is also exponential for a field GF(p). MPPK/DS can achieve all three NIST security levels with optimized choices of multivariate polynomials and the generalized safe prime p.

摘要

我们提出了一种名为多元多项式公钥数字签名(MPPK/DS)的新型抗量子数字签名算法。该算法的核心基于模运算性质:对于素伽罗瓦域GF(p)中给定的大于等于2的元素g以及两个多元多项式P和Q,若P模p - 1等于Q,则g的P次幂模p等于g的Q次幂。MPPK/DS旨在抵御仅密钥攻击、选择消息攻击和已知消息攻击。最重要的是,将元素g保密不利于量子计算机解决离散对数问题的能力。MPPK/DS算法的安全性源于选择与域GF(p)相关联的素数p,使得p是一个奇素数q与2的幂x的乘积再加上1的和。给定这样的素数选择,选择公开可用多项式的偶数系数使得难以找到模p - 1的任何私有信息。此外,通过适当安排x和q,将模q找到的解提升到模p - 1的整数环上是指数困难的。然而,找到模两个分量q和2的幂x的私有信息是一个NP难问题,因为它涉及在所选有限域上求解多元方程。从公钥或签名中搜索私钥的时间复杂度在GF(p)上是指数级的。对于域GF(p),实施欺骗攻击的时间复杂度也是指数级的。通过对多元多项式和广义安全素数p进行优化选择,MPPK/DS可以达到所有三个NIST安全级别。

相似文献

1
A new quantum-safe multivariate polynomial public key digital signature algorithm.
Sci Rep. 2022 Aug 1;12(1):13168. doi: 10.1038/s41598-022-15843-x.
2
Optimization of the multivariate polynomial public key for quantum safe digital signature.
Sci Rep. 2023 Apr 19;13(1):6363. doi: 10.1038/s41598-023-32461-3.
3
The specifics of the Galois field GF(257) and its use for digital signal processing.
Sci Rep. 2024 Jul 4;14(1):15376. doi: 10.1038/s41598-024-66332-2.
4
Features of digital signal processing algorithms using Galois fields GF(2n+1).
PLoS One. 2023 Oct 25;18(10):e0293294. doi: 10.1371/journal.pone.0293294. eCollection 2023.
5
A Verified Implementation of the Berlekamp-Zassenhaus Factorization Algorithm.
J Autom Reason. 2020;64(4):699-735. doi: 10.1007/s10817-019-09526-y. Epub 2019 Jun 17.
6
Quantum attack-resistent certificateless multi-receiver signcryption scheme.
PLoS One. 2013 Jun 5;8(6):e49141. doi: 10.1371/journal.pone.0049141. eCollection 2013.
7
Some New -Congruences for Truncated Basic Hypergeometric Series: Even Powers.
Results Math. 2020;75(1):1. doi: 10.1007/s00025-019-1126-4. Epub 2019 Nov 28.
8
A message recovery attack on multivariate polynomial trapdoor function.
PeerJ Comput Sci. 2023 Aug 28;9:e1521. doi: 10.7717/peerj-cs.1521. eCollection 2023.
9
NTRU-Like Random Congruential Public-Key Cryptosystem for Wireless Sensor Networks.
Sensors (Basel). 2020 Aug 17;20(16):4632. doi: 10.3390/s20164632.
10
Quantum rectangular MinRank attack on multi-layer UOV signature schemes.
Sci Rep. 2024 Jul 16;14(1):16340. doi: 10.1038/s41598-024-66841-0.

引用本文的文献

1
Post-Quantum Security: Opportunities and Challenges.
Sensors (Basel). 2023 Oct 26;23(21):8744. doi: 10.3390/s23218744.
2
Optimization of the multivariate polynomial public key for quantum safe digital signature.
Sci Rep. 2023 Apr 19;13(1):6363. doi: 10.1038/s41598-023-32461-3.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验