Suppr超能文献

直接观察淋球菌 IV 型菌毛的序列特异性 DNA 结合。

Direct visualization of sequence-specific DNA binding by gonococcal type IV pili.

机构信息

School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.

Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Bristol, UK.

出版信息

Microbiology (Reading). 2022 Aug;168(8). doi: 10.1099/mic.0.001224.

Abstract

, the causative agent of gonorrhoea, is a major burden on global healthcare systems, with an estimated ~80-90 million new global cases annually. This burden is exacerbated by increasing levels of antimicrobial resistance, which has greatly limited viable antimicrobial therapies. Decreasing gonococcal drug susceptibility has been driven largely by accumulation of chromosomal resistance determinants, which can be acquired through natural transformation, whereby DNA in the extracellular milieu is imported into cells and incorporated into the genome by homologous recombination. possesses a specialized system for DNA uptake, which strongly biases transformation in favour of DNA from closely related bacteria by recognizing a 10-12 bp DNA uptake sequence (DUS) motif, which is highly overrepresented in their chromosomal DNA. This process relies on numerous proteins, including the DUS-specific receptor ComP, which assemble retractile protein filaments termed type IV pili (T4P) extending from the cell surface, and one model for neisserial DNA uptake proposes that these filaments bind DNA in a DUS-dependent manner before retracting to transport DNA into the periplasm. However, conflicting evidence indicates that elongated pilus filaments may not have such a direct role in DNA binding uptake as this model suggests. Here, we quantitatively measured DNA binding to gonococcal T4P fibres by directly visualizing binding complexes with confocal fluorescence microscopy in order to confirm the sequence-specific, comP-dependent DNA binding capacity of elongated T4P fibres. This supports the idea that pilus filaments could be responsible for initially capturing DNA in the first step of sequence-specific DNA uptake.

摘要

淋病奈瑟菌是淋病的病原体,给全球医疗系统带来了沉重负担,全球每年估计有~8000 万至 9000 万例新发病例。这种负担因抗菌药物耐药性的不断增加而加剧,这大大限制了可行的抗菌治疗方法。淋球菌对药物的敏感性下降主要是由于染色体耐药决定因素的积累所致,这些决定因素可以通过自然转化获得,即细胞外环境中的 DNA 被导入细胞,并通过同源重组整合到基因组中。 具有专门的 DNA 摄取系统,通过识别高度代表性的 10-12 碱基对 DNA 摄取序列(DUS)基序,强烈偏向于从密切相关的细菌中摄取 DNA,从而强烈偏向于有利于从密切相关的细菌中摄取 DNA。这个过程依赖于许多蛋白质,包括 DUS 特异性受体 ComP,它组装可回缩的蛋白丝,称为 IV 型菌毛(T4P),从细胞表面伸出,并且有一个关于奈瑟氏菌 DNA 摄取的模型表明,这些纤维以 DUS 依赖的方式结合 DNA,然后缩回以将 DNA 转运到周质中。然而,相互矛盾的证据表明,伸长的菌毛丝可能没有像该模型所建议的那样在 DNA 结合摄取中发挥直接作用。在这里,我们通过共聚焦荧光显微镜直接观察结合复合物,定量测量了 DNA 与淋球菌 T4P 纤维的结合,以确认伸长的 T4P 纤维的序列特异性、ComP 依赖性 DNA 结合能力。这支持了菌毛丝可能负责在序列特异性 DNA 摄取的第一步中捕获 DNA 的想法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验