Suppr超能文献

栉孔扇贝的神经发生:从首个幼虫感觉神经元到幼体的定型神经系统

Neurogenesis of the scallop Azumapecten farreri: from the first larval sensory neurons to the definitive nervous system of juveniles.

作者信息

Kniazkina Marina, Dyachuk Vyacheslav

机构信息

A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, 690041, Russia.

出版信息

Front Zool. 2022 Aug 3;19(1):22. doi: 10.1186/s12983-022-00468-7.

Abstract

BACKGROUND

Scallops are among the best-studied bivalve mollusks. However, adult nervous system and neurogenesis studies of scallops are limited. Here, we studied the localization of neurotransmitters (serotonin/5-HT, FMRFamide, catecholamines) in adult ganglia and larvae of Azumapecten farreri using histochemical and immunohistochemical methods.

RESULTS

We found peptide FMRFamide in all adult scallop ganglia, whereas 5-HT-like immunoreactive (lir) somata were exclusively detected in the cerebropleural, pedal, and accessory ganglia. Scallop larval neurogenesis starts with the emergence of the 5-HT-lir neurons, which are part of the apical organ (AO) at the early veliger stage. Near the AO, paired anlagen of cerebral ganglion (CG) developed. 5-HT-lir neurites of the CG innervate the velum, ventral, and dorsal parts of the larva at the late veliger stage. Scallop pediveligers possess 5-HT-lir CG, pleural ganglia, and immunopositive signals in the developing enteric nervous system. FMRFamide-lir is first detected in dorsal, ventral, and AO cells of early veligers. Later, FMRFamide-lir extends to the visceral nervous cord, all ganglia, as well as in the enteric nervous system in pediveligers. Catecholaminergic neurons are detected near the larval mouth, in the vellum, and in the stomach in veligers.

CONCLUSIONS

We described the distribution of neurotransmitters of the ganglia in adult scallops and the larval neurodevelopment in A. farreri. Immunostaining of neurotransmitters showed that the gross anatomy of adult scallop ganglia, in general, is similar to that in other bivalves, but complicated by the complexity of the structure of the ganglia and the appearance of additional ganglia not described in other molluscs. A comparison of larval neuromorphology suggests that 5-HT-lir structures are more conservative than FMRF-lir structures in Bivalvia. Notably, the latter are much more distributed in scallop A. farreri larvae than in other studied bivalves.

摘要

背景

扇贝是研究最为深入的双壳贝类之一。然而,对扇贝成体神经系统和神经发生的研究却很有限。在此,我们运用组织化学和免疫组织化学方法,研究了栉孔扇贝成体神经节和幼虫中神经递质(5-羟色胺/5-HT、FMRF酰胺、儿茶酚胺)的定位。

结果

我们在所有成年扇贝神经节中均发现了肽FMRF酰胺,而5-HT样免疫反应性(lir)细胞体仅在脑侧神经节、足神经节和副神经节中被检测到。扇贝幼虫神经发生始于5-HT-lir神经元的出现,这些神经元在早期面盘幼虫阶段是顶器(AO)的一部分。在AO附近,成对的脑神经节(CG)原基开始发育。在面盘幼虫后期,CG的5-HT-lir神经突支配幼虫的膜、腹侧和背侧部分。扇贝稚贝的CG、胸膜神经节以及发育中的肠神经系统中存在5-HT-lir和免疫阳性信号。FMRF酰胺-lir最早在早期面盘幼虫的背侧、腹侧和AO细胞中被检测到。之后,FMRF酰胺-lir延伸至稚贝的内脏神经索、所有神经节以及肠神经系统。儿茶酚胺能神经元在面盘幼虫的幼虫口附近、膜和胃中被检测到。

结论

我们描述了成年扇贝神经节中神经递质的分布以及栉孔扇贝幼虫的神经发育情况。神经递质的免疫染色表明,成年扇贝神经节的大体解剖结构总体上与其他双壳类相似,但因神经节结构的复杂性以及其他软体动物未描述的额外神经节的出现而变得复杂。幼虫神经形态学的比较表明,双壳类中5-HT-lir结构比FMRF-lir结构更为保守。值得注意的是,后者在栉孔扇贝幼虫中的分布比其他研究过的双壳类要广泛得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddcc/9347173/366e3b0a5d94/12983_2022_468_Fig1_HTML.jpg

相似文献

2
Nervous system development in the Pacific oyster, (Mollusca: Bivalvia).
Front Zool. 2018 Apr 11;15:10. doi: 10.1186/s12983-018-0259-8. eCollection 2018.
3
Comparative Neuroanatomy of Pediveliger Larvae of Various Bivalves from the Sea of Japan.
Biology (Basel). 2023 Oct 17;12(10):1341. doi: 10.3390/biology12101341.
4
Towards a ground pattern reconstruction of bivalve nervous systems: neurogenesis in the zebra mussel .
Org Divers Evol. 2018;18(1):101-114. doi: 10.1007/s13127-017-0356-0. Epub 2018 Jan 18.
6
First Immunodetection of Sensory and Nervous Systems of Parasitic Larvae (Glochidia) of Freshwater Bivalve .
Front Physiol. 2022 Apr 11;13:879540. doi: 10.3389/fphys.2022.879540. eCollection 2022.
7
Comparison of neurogenesis in bivalves with different types of development.
Sci Rep. 2024 Aug 22;14(1):19495. doi: 10.1038/s41598-024-67622-5.
10
Peripheral sensory neurons govern development of the nervous system in bivalve larvae.
Evodevo. 2019 Sep 12;10:22. doi: 10.1186/s13227-019-0133-6. eCollection 2019.

引用本文的文献

1
The unique biology of catch muscles: insights into structure, function, and robotics innovations.
Front Bioeng Biotechnol. 2025 Apr 16;13:1478626. doi: 10.3389/fbioe.2025.1478626. eCollection 2025.
2
Comparison of neurogenesis in bivalves with different types of development.
Sci Rep. 2024 Aug 22;14(1):19495. doi: 10.1038/s41598-024-67622-5.
5
Comparative Neuroanatomy of Pediveliger Larvae of Various Bivalves from the Sea of Japan.
Biology (Basel). 2023 Oct 17;12(10):1341. doi: 10.3390/biology12101341.
6
Role of the Neuroendocrine System of Marine Bivalves in Their Response to Hypoxia.
Int J Mol Sci. 2023 Jan 7;24(2):1202. doi: 10.3390/ijms24021202.

本文引用的文献

2
Distribution of Molecules Related to Neurotransmission in the Nervous System of the Mussel .
Front Neuroanat. 2020 Jun 30;14:35. doi: 10.3389/fnana.2020.00035. eCollection 2020.
3
Peripheral sensory neurons govern development of the nervous system in bivalve larvae.
Evodevo. 2019 Sep 12;10:22. doi: 10.1186/s13227-019-0133-6. eCollection 2019.
4
Towards a ground pattern reconstruction of bivalve nervous systems: neurogenesis in the zebra mussel .
Org Divers Evol. 2018;18(1):101-114. doi: 10.1007/s13127-017-0356-0. Epub 2018 Jan 18.
8
Nervous system development in the Pacific oyster, (Mollusca: Bivalvia).
Front Zool. 2018 Apr 11;15:10. doi: 10.1186/s12983-018-0259-8. eCollection 2018.
9
Catecholamine-Containing Cells in Larval and Postlarval Bivalve Molluscs.
Biol Bull. 1997 Oct;193(2):116-124. doi: 10.2307/1542757.
10
Hematopoiesis in Bivalvia larvae: Cellular origin, differentiation of hemocytes, and neoplasia.
Dev Comp Immunol. 2016 Dec;65:253-257. doi: 10.1016/j.dci.2016.07.019. Epub 2016 Jul 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验