Suppr超能文献

四肢瘫痪患者日常活动中肱肌至腕伸肌肌肉转移功能的生物力学建模

Biomechanical Modeling of Brachialis-to-Wrist Extensor Muscle Transfer Function for Daily Activities in Tetraplegia.

作者信息

Son Jongsang, Fridén Jan, Lieber Richard L

机构信息

Shirley Ryan AbilityLab, Chicago, Illinois.

Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois.

出版信息

JB JS Open Access. 2022 Jul 21;7(3). doi: 10.2106/JBJS.OA.22.00018. eCollection 2022 Jul-Sep.

Abstract

UNLABELLED

We recently reported a novel case demonstrating the feasibility of a brachialis (BRA)-to-extensor carpi radialis brevis (ECRB) tendon transfer, but it is not yet known whether this transfer provides robust functional results across activities. The purpose of this study was to use biomechanical modeling to define the functional capacity of the BRA-to-ECRB tendon transfer in terms of enabling the performance of several activities of daily living.

METHODS

A model of the transferred BRA-ECRB muscle-tendon unit was developed to calculate isometric elbow and wrist joint torque as a function of elbow and wrist angles resulting from different BRA reattachment locations from 50 to 80 mm proximal to the wrist joint crease. Using this model, mathematical optimization predicted the optimal location for BRA reattachment in order to perform each of a number of important upper extremity tasks as well as to calculate a global optimum for performing all of the tasks.

RESULTS

Analysis of active joint torque showed that the entire elbow torque-angle curve surface shifted "diagonally" toward elbow flexion and wrist extension as the attachment location approached the wrist joint; peak wrist torque was produced at extended wrist angles. Our model predicted that the optimal attachment location for each different task ranged from 54.3 to 74.6 mm proximal to the wrist joint, which is feasible given the anatomy of the muscle-tendon unit. The attachment location to optimize performing all tasks was calculated as 63.5 mm proximal to the wrist joint.

CONCLUSIONS

This study clearly demonstrates that the BRA, which is underused as a donor in tetraplegia surgery, is an excellent donor muscle to provide wrist extension. Biomechanical simulation further highlighted the need to consider not only donor-muscle appropriateness but the patient's desired function when planning surgical tendon transfers.

CLINICAL RELEVANCE

Quantitative evaluation of the way that surgery affects daily tasks rather than simply matching muscle properties may be a more appropriate approach for surgeons to use when choosing and tensioning donor muscles.

摘要

未标注

我们最近报道了一个新病例,证明了肱肌(BRA)至桡侧腕短伸肌(ECRB)肌腱转移的可行性,但尚不清楚这种转移在各种活动中是否能产生强大的功能效果。本研究的目的是使用生物力学建模来确定BRA至ECRB肌腱转移在实现多项日常生活活动方面的功能能力。

方法

建立了转移后的BRA-ECRB肌肉-肌腱单元模型,以计算等长肘和腕关节扭矩,该扭矩是腕关节折痕近端50至80毫米处不同BRA重新附着位置所导致的肘和腕角度的函数。使用该模型,数学优化预测了BRA重新附着的最佳位置,以便执行多项重要的上肢任务中的每一项,并计算执行所有任务的全局最优值。

结果

主动关节扭矩分析表明,随着附着位置接近腕关节,整个肘扭矩-角度曲线表面“对角”向肘屈曲和腕伸展方向移动;在腕伸展角度时产生峰值腕扭矩。我们的模型预测,每个不同任务的最佳附着位置在腕关节近端54.3至74.6毫米之间,考虑到肌肉-肌腱单元的解剖结构,这是可行的。计算得出优化执行所有任务的附着位置为腕关节近端63.5毫米。

结论

本研究清楚地表明,在四肢瘫手术中未充分利用的BRA是提供腕伸展的优秀供体肌肉。生物力学模拟进一步强调,在计划手术肌腱转移时,不仅要考虑供体肌肉的适宜性,还要考虑患者期望的功能。

临床相关性

对于外科医生在选择和张紧供体肌肉时,定量评估手术影响日常任务的方式而非简单匹配肌肉特性可能是更合适的方法。

相似文献

1
Biomechanical Modeling of Brachialis-to-Wrist Extensor Muscle Transfer Function for Daily Activities in Tetraplegia.
JB JS Open Access. 2022 Jul 21;7(3). doi: 10.2106/JBJS.OA.22.00018. eCollection 2022 Jul-Sep.
3
Nerve transfers for restoration of finger flexion in patients with tetraplegia.
J Neurosurg Spine. 2017 Jan;26(1):55-61. doi: 10.3171/2016.5.SPINE151544. Epub 2016 Aug 5.
6
Flexor Digitorum Superficialis Tendon Transfer for Wrist Extension.
JBJS Essent Surg Tech. 2021 Nov 8;11(4). doi: 10.2106/JBJS.ST.21.00011. eCollection 2021 Oct-Dec.
7
Surgical Technique: Brachioradialis to Extensor Carpi Radialis Longus and Brevis Nerve Transfers for Tetraplegia.
Tech Hand Up Extrem Surg. 2024 Jun 1;28(2):88-91. doi: 10.1097/BTH.0000000000000471.
9
Variability in surgical technique for brachioradialis tendon transfer. Evidence and implications.
J Bone Joint Surg Am. 2006 Sep;88(9):2009-16. doi: 10.2106/JBJS.E.00973.
10
Brachialis muscle transfer to reconstruct finger flexion or wrist extension in brachial plexus palsy.
J Hand Surg Am. 2006 Feb;31(2):190-6. doi: 10.1016/j.jhsa.2005.09.020.

引用本文的文献

本文引用的文献

2
In vivo human gracilis whole-muscle passive stress-sarcomere strain relationship.
J Exp Biol. 2021 Sep 1;224(17). doi: 10.1242/jeb.242722. Epub 2021 Sep 3.
3
Perspective on musculoskeletal modelling and predictive simulations of human movement to assess the neuromechanics of gait.
Proc Biol Sci. 2021 Mar 10;288(1946):20202432. doi: 10.1098/rspb.2020.2432. Epub 2021 Mar 3.
4
Precision Oncology: The Road Ahead.
Trends Mol Med. 2017 Oct;23(10):874-898. doi: 10.1016/j.molmed.2017.08.003. Epub 2017 Sep 5.
5
Range of Motion Requirements for Upper-Limb Activities of Daily Living.
Am J Occup Ther. 2016 Jan-Feb;70(1):7001350010p1-7001350010p10. doi: 10.5014/ajot.2016.015487.
6
Kinematic analysis of upper extremity movement during drinking in hemiplegic subjects.
Clin Biomech (Bristol). 2014 Mar;29(3):248-56. doi: 10.1016/j.clinbiomech.2013.12.013. Epub 2014 Jan 3.
7
Nerve transfer strategies for spinal cord injury.
World Neurosurg. 2013 Dec;80(6):e319-26. doi: 10.1016/j.wneu.2012.10.001. Epub 2012 Oct 5.
8
Standard task set for evaluating rehabilitation interventions for individuals with arm paralysis.
J Rehabil Res Dev. 2012;49(3):395-403. doi: 10.1682/jrrd.2011.03.0040.
9
Satisfaction and performance in patient selected goals after grip reconstruction in tetraplegia.
J Hand Surg Eur Vol. 2010 Sep;35(7):563-8. doi: 10.1177/1753193410373184. Epub 2010 May 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验