Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
J Theor Biol. 2022 Oct 7;550:111236. doi: 10.1016/j.jtbi.2022.111236. Epub 2022 Aug 1.
The Wright-Fisher binomial model of allele frequency change is often approximated by a scaling limit in which selection, mutation and drift all decrease at the same 1/N rate. This construction restricts the applicability of the resulting 'Wright-Fisher diffusion equation' to the weak selection, weak mutation regime of evolution. We argue that diffusion approximations of the Wright-Fisher model can be used more generally, for instance in cases where genetic drift is much weaker than selection. One important example of this regime is Muller's ratchet phenomenon, whereby deleterious mutations slowly but irreversibly accumulate through rare stochastic fluctuations. Using a modified diffusion equation we derive improved analytical estimates for the mean click time of the ratchet.
Wright-Fisher 二项式等位基因频率变化模型通常通过一种缩放极限来近似,其中选择、突变和漂移都以相同的 1/N 速率减少。这种构造将产生的“Wright-Fisher 扩散方程”的适用性限制在进化的弱选择、弱突变范围内。我们认为,Wright-Fisher 模型的扩散近似可以更广泛地使用,例如在遗传漂变比选择弱得多的情况下。这种情况下的一个重要例子是 Muller 的棘轮现象,有害突变通过罕见的随机波动缓慢但不可逆转地积累。我们使用改进的扩散方程推导出棘轮的平均点击时间的改进分析估计。