Suppr超能文献

深度学习模型在海岸线和滨海岸线检测中的应用。

Application of deep learning models to detect coastlines and shorelines.

机构信息

Faculty of Geography, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.

Faculty of Geography, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.

出版信息

J Environ Manage. 2022 Oct 15;320:115732. doi: 10.1016/j.jenvman.2022.115732. Epub 2022 Aug 3.

Abstract

Identifying and monitoring coastlines and shorelines play an important role in coastal erosion assessment around the world. The application of deep learning models was used in this study to detect coastlines and shorelines in Vietnam using high-resolution satellite images and different object segmentation methods. The aims are to (1) propose indicators to identify coastlines and shorelines; (2) build deep learning (DL) models to automatically interpret coastlines and shorelines from high-resolution remote sensing images; and (3) apply DL-trained models to monitor coastal erosion in Vietnam. Eight DL models were trained based on four artificial-intelligent-network structures, including U-Net, U2-Net, U-Net3+, and DexiNed. The high-resolution images collected from Google Earth Pro software were used as input data for training all models. As a result, the U-Net using an input-image size of 512 × 512 provides the highest performance of 98% with a loss function of 0.16. The interpretation results of this model were used effectively for the coastline and shoreline identification in assessing coastal erosion in Vietnam due to sea-level rise in storm events over 20 years. The outcomes proved that while the shoreline is ideal for observing seasonal tidal changes or the immediate motions of current waves, the coastline is suitable to assess coastal erosion caused by the influence of sea-level rise during storms. This paper has provided a broad scope of how the U-Net model can be used to predict the coastal changes over vietnam and the world.

摘要

识别和监测海岸线在全球范围内的海岸侵蚀评估中起着重要作用。本研究应用深度学习模型,使用高分辨率卫星图像和不同的目标分割方法来检测越南的海岸线和滨岸带。目的是:(1)提出识别海岸线和滨岸带的指标;(2)构建深度学习(DL)模型,从高分辨率遥感图像中自动解释海岸线和滨岸带;(3)应用经过 DL 训练的模型监测越南的海岸侵蚀。基于四种人工智能网络结构,包括 U-Net、U2-Net、U-Net3+和 DexiNed,训练了八个 DL 模型。所有模型都使用从 Google Earth Pro 软件收集的高分辨率图像作为输入数据。结果表明,使用输入图像大小为 512×512 的 U-Net 提供了最高的性能,达到 98%,损失函数为 0.16。由于风暴事件导致海平面上升,该模型的解释结果可有效用于评估越南的海岸侵蚀中的海岸线和滨岸带识别。研究结果表明,虽然滨岸带适合观察季节性潮汐变化或当前波浪的即时运动,但海岸线适合评估风暴期间海平面上升对海岸侵蚀的影响。本文提供了一个广泛的范围,说明 U-Net 模型如何用于预测越南和世界的海岸变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验