Suppr超能文献

一种具有生物活性和光响应性的无线电刺激平台,用于促进神经发生。

A Bioactive and Photoresponsive Platform for Wireless Electrical Stimulation to Promote Neurogenesis.

机构信息

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610064, China.

Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan, 610065, China.

出版信息

Adv Healthc Mater. 2022 Oct;11(20):e2201255. doi: 10.1002/adhm.202201255. Epub 2022 Aug 15.

Abstract

Delivering electrical signals to neural cells and tissue has attracted increasing attention in the treatment of nerve injuries. Unlike traditional wired electrical stimulation, wireless and remote light stimulation provides less invasive and longer-lasting interfaces, holding great promise in the treatment of nerve injuries and neurodegenerative diseases, as well as human-computer interaction. Additionally, a bioactive matrix that bridges the injured gap and induces nerve regeneration is essential for injured nerve repair. However, it is still challenging to construct a 3D biomimetic cell niche with optoelectrical responsiveness. Herein, a bioactive platform for remote and wireless optoelectrical stimulation is established by incorporating hydrophilic poly(3-hexylthiophene) nanoparticles (P3HT NPs) into a biomimetic hydrogel matrix. Moreover, the hydrogel matrix is modified by varying the composition and/or the crosslinking degree to meet the needs of different application scenarios. When exposed to pulsed green light, P3HT NPs in hydrogels convert light signals into electrical signals, resulting in the generation of tens of picoampere photocurrent, which is proved to promote the growth of cortical neurons that covered by hydrogels and the neuronal differentiation of bone marrow mesenchymal stem cells (BMSCs) encapsulated in hydrogels. This work is of great significance for the design of next-generation neural electrodes and scaffolds.

摘要

将电信号传递给神经细胞和组织在神经损伤治疗中受到了越来越多的关注。与传统的有线电刺激不同,无线和远程光刺激提供了侵入性更小、持续时间更长的接口,在神经损伤和神经退行性疾病以及人机交互治疗方面具有很大的应用前景。此外,用于桥接损伤间隙并诱导神经再生的生物活性基质对于损伤神经的修复至关重要。然而,构建具有光电响应的 3D 仿生细胞小生境仍然具有挑战性。在此,通过将亲水性聚(3-己基噻吩)纳米粒子(P3HT NPs)掺入仿生水凝胶基质中,建立了用于远程和无线光电刺激的生物活性平台。此外,通过改变水凝胶基质的组成和/或交联度来进行修饰,以满足不同应用场景的需求。当暴露于脉冲绿光时,水凝胶中的 P3HT NPs 将光信号转换为电信号,产生数十皮安的光电流,该光电流被证明可促进被水凝胶覆盖的皮质神经元的生长和水凝胶内包封的骨髓间充质干细胞(BMSCs)的神经元分化。这项工作对于下一代神经电极和支架的设计具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验