Suppr超能文献

体内荧光 TUNEL 检测 DNA B 解旋酶突变体在大肠杆菌中诱导的单链 DNA 缺口和断裂。

In vivo fluorescent TUNEL detection of single stranded DNA gaps and breaks induced by dnaB helicase mutants in Escherichia coli.

机构信息

Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.

Department of Chemistry and Biochemistry, Baylor University, Waco, TX, United States.

出版信息

Methods Enzymol. 2022;672:125-142. doi: 10.1016/bs.mie.2022.02.021. Epub 2022 Mar 21.

Abstract

The genome of prokaryotes can be damaged by a variety of endogenous and exogenous factors, including reactive oxygen species, UV exposure, and antibiotics. To better understand these repair processes and the impact they may have on DNA replication, normal genome maintenance processes can be perturbed by removing or editing associated genes and monitoring DNA repair outcomes. In particular, the replisome activities of DNA unwinding by the helicase and DNA synthesis by the polymerase must be tightly coupled to prevent any appreciable single strand DNA (ssDNA) from accumulating and amplifying genomic stress. If decoupled, vulnerable ssDNA would persist, likely leading to double strand breaks (DSBs) or requiring replication restart mechanisms downstream of a stall. In either case, free 3'-OH strands would exist, resulting from ssDNA gaps in the leading strand or complete DSBs. Terminal deoxyribonucleotide transferase (TdT)-mediated dUTP nick end labeling (TUNEL) can enzymatically label ssDNA ends with bromo-deoxy uridine triphosphate (BrdU) to detect free 3'-OH DNA ends in the E. coli genome. Labeled DNA ends can be detected and quantified using fluorescence microscopy or flow cytometry. This methodology is useful in applications where in situ investigation of DNA damage and repair are of interest, including effects from enzyme mutations or deletions and exposure to various environmental conditions.

摘要

原核生物的基因组可能会受到各种内源性和外源性因素的破坏,包括活性氧、紫外线照射和抗生素。为了更好地理解这些修复过程以及它们对 DNA 复制可能产生的影响,可以通过去除或编辑相关基因并监测 DNA 修复结果来干扰正常的基因组维护过程。特别是,DNA 解旋酶的解旋和聚合酶的 DNA 合成的复制体活性必须紧密偶联,以防止任何可观的单链 DNA(ssDNA)积累和放大基因组压力。如果解偶联,脆弱的 ssDNA 将持续存在,可能导致双链断裂(DSB)或需要在停滞点下游的复制重新启动机制。在任何一种情况下,游离的 3'-OH 链都将存在,这是由于前导链上的 ssDNA 缺口或完全的 DSB 造成的。末端脱氧核苷酸转移酶(TdT)介导的 dUTP 缺口末端标记(TUNEL)可以用溴脱氧尿苷三磷酸(BrdU)酶促标记 ssDNA 末端,以检测大肠杆菌基因组中游离的 3'-OH DNA 末端。使用荧光显微镜或流式细胞术可以检测和定量标记的 DNA 末端。这种方法在需要原位研究 DNA 损伤和修复的应用中非常有用,包括酶突变或缺失以及暴露于各种环境条件的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验