Greiner Michèle G, Singldinger Andreas, Henke Nina A, Lampe Carola, Leo Ulrich, Gramlich Moritz, Urban Alexander S
Nanospectroscopy Group and Center for Nanoscience (CeNS), Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München, Königinstraße 10, 80539 Munich, Germany.
Nano Lett. 2022 Aug 24;22(16):6709-6715. doi: 10.1021/acs.nanolett.2c02108. Epub 2022 Aug 8.
Outstanding optoelectronic properties and a facile synthesis render halide perovskite nanocrystals (NCs) a promising material for nanostructure-based devices. However, the commercialization is hindered mainly by the lack of NC stability under ambient conditions and inefficient charge carrier injection. Here, we investigate solutions to both problems, employing methylammonium lead bromide (MAPbBr) NCs encapsulated in diblock copolymer core-shell micelles of tunable size. We confirm that the shell does not prohibit energy transfer, as FRET efficiencies between these NCs and 2D CsPbBr nanoplatelets (NPLs) reach 73.6%. This value strongly correlates to the micelle size, with thicker shells displaying significantly reduced FRET efficiencies. Those high efficiencies come with a price, as the thinnest shells protect the encapsulated NCs less from environmentally induced degradation. Finding the sweet spot between efficiency and protection could lead to the realization of tailored energy funnels with enhanced carrier densities for high-power perovskite NC-based optoelectronic applications.
优异的光电特性和简便的合成方法使卤化物钙钛矿纳米晶体(NCs)成为基于纳米结构的器件的一种有前途的材料。然而,商业化主要受到环境条件下NC稳定性不足和电荷载流子注入效率低下的阻碍。在此,我们研究这两个问题的解决方案,采用封装在尺寸可调的双嵌段共聚物核壳胶束中的甲基溴化铅(MAPbBr)NCs。我们证实,壳层并不阻碍能量转移,因为这些NCs与二维CsPbBr纳米片(NPLs)之间的荧光共振能量转移(FRET)效率达到73.6%。该值与胶束尺寸密切相关,壳层越厚,FRET效率显著降低。这些高效率是有代价的,因为最薄的壳层对封装的NCs免受环境诱导降解的保护作用较小。找到效率和保护之间的平衡点可能会实现定制的能量漏斗,提高载流子密度,用于高功率基于钙钛矿NC的光电应用。