Suppr超能文献

四个变量足以用于腰痛:确定哪些患者报告的工具可改善疼痛和残疾。

Four Variables Were Sufficient for Low Back Pain: Determining Which Patient-Reported Tools Pain and Disability Improvements.

出版信息

J Orthop Sports Phys Ther. 2022 Oct;52(10):685-693. doi: 10.2519/jospt.2022.11018. Epub 2022 Aug 12.

Abstract

To predict 30- and 180-day improvements in disability and pain for patients seeking physical therapy care for low back pain (LBP). Longitudinal cohort. Baseline assessment was completed by 259 patients with chief complaint of LBP, and the assessment includes psychosocial measures (Keele STarT Back Screening [SBST] and the Optimal Screening for Prediction of Referral and Outcome Yellow Flag [OSPRO-YF] tools), the Optimal Screening for Prediction of Referral and Outcome Review of Symptoms (OSPRO-ROS) and the Review of Symptoms Plus (OSPRO-ROS+) tools, the Charlson Comorbidity Index (CCI), the Area Deprivation Index (ADI), and the National Institute of Health Chronic Pain Criteria (NIH-CP). Using the Modified Low Back Disability Questionnaire (MDQ) and the Numeric Pain Rating Scale (NPRS) as primary outcomes, statistical analysis determined multiple sets of predictor variables with similar model performance. The parsimonious "best model" for prediction of the 180-day MDQ change included 3 predictors (Admit MDQ, NIH-CP, and OSPRO ROS+) because it had the lowest penalized goodness-of-fit statistic (BIC = -35.21) and the highest explained variance (R2 = 0.295). The parsimonious "best model" for 180-day NPRS change included 2 variables (Admit NPRS and OSPRO-ROS+) with the lowest penalized goodness-of-fit statistic (BIC = -18.2) and the highest explained variance (R2 = 0.190). There were many model options with similar statistical performance when using established measures to predict MDQ and NPRS outcomes. A potential variable set for a standard predictive model that balances statistical performance with pragmatic considerations included the OSPRO-ROS+, OSPRO-YF, NIH-CP definition, and admit MDQ and NPRS scores. .

摘要

为了预测因腰痛(LBP)接受物理治疗的患者在 30 天和 180 天的残疾和疼痛改善情况。纵向队列。259 名主诉为 LBP 的患者完成了基线评估,评估包括社会心理测量(基尔 STarT 背部筛查(SBST)和最佳筛查预测转诊和结局黄色标志(OSPRO-YF)工具)、最佳筛查预测转诊和结局症状审查(OSPRO-ROS)和症状加审查(OSPRO-ROS+)工具、Charlson 合并症指数(CCI)、区域贫困指数(ADI)和国家卫生慢性疼痛标准(NIH-CP)。使用改良腰痛残疾问卷(MDQ)和数字疼痛评分量表(NPRS)作为主要结局,统计分析确定了多组具有相似模型性能的预测变量。预测 180 天 MDQ 变化的简约“最佳模型”包括 3 个预测因子(入院 MDQ、NIH-CP 和 OSPRO ROS+),因为它具有最低的惩罚拟合优度统计量(BIC =-35.21)和最高的解释方差(R2 = 0.295)。预测 180 天 NPRS 变化的简约“最佳模型”包括 2 个变量(入院 NPRS 和 OSPRO-ROS+),具有最低的惩罚拟合优度统计量(BIC =-18.2)和最高的解释方差(R2 = 0.190)。使用既定措施预测 MDQ 和 NPRS 结局时,有许多具有相似统计性能的模型选择。一个平衡统计性能和实际考虑的标准预测模型的潜在变量集包括 OSPRO-ROS+、OSPRO-YF、NIH-CP 定义以及入院 MDQ 和 NPRS 评分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验