Xu Jia-Min, Zhen Yi-Zheng, Yang Yu-Xiang, Cheng Zi-Mo, Ren Zhi-Cheng, Chen Kai, Wang Xi-Lin, Wang Hui-Tian
Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China.
CAS Centre for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China.
Phys Rev Lett. 2022 Jul 29;129(5):050402. doi: 10.1103/PhysRevLett.129.050402.
Quantum pseudotelepathy is a strong form of nonlocality. Different from the conventional nonlocal games where quantum strategies win statistically, e.g., the Clauser-Horne-Shimony-Holt game, quantum pseudotelepathy in principle allows quantum players to with probability 1. In this Letter, we report a faithful experimental demonstration of quantum pseudotelepathy via playing the nonlocal version of Mermin-Peres magic square game, where Alice and Bob cooperatively fill in a 3×3 magic square. We adopt the hyperentanglement scheme and prepare photon pairs entangled in both the polarization and the orbital angular momentum degrees of freedom, such that the experiment is carried out in a resource-efficient manner. Under the locality and fair-sampling assumption, our results show that quantum players can simultaneously win all the queries over any classical strategy.
量子伪心灵感应是一种强形式的非定域性。与传统的非定域博弈不同,在传统非定域博弈中量子策略在统计上获胜,例如在克劳泽 - 霍恩 - 希莫尼 - 霍尔特博弈中,而量子伪心灵感应原则上允许量子参与者以概率1获胜。在本信函中,我们报告了通过进行非定域版本的默明 - 佩雷斯魔方博弈来实现量子伪心灵感应的可靠实验演示,其中爱丽丝和鲍勃合作填写一个3×3的魔方。我们采用超纠缠方案并制备在偏振和轨道角动量自由度上都纠缠的光子对,从而以资源高效的方式进行实验。在定域性和公平采样假设下,我们的结果表明,量子参与者可以通过任何经典策略同时赢得所有查询。