Suppr超能文献

通过 DEAD-box 解旋酶蛋白测量 RNA 解旋和 RNA 伴侣活性中的 ATP 利用。

Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins.

机构信息

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.

Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.

出版信息

Methods Enzymol. 2022;673:53-76. doi: 10.1016/bs.mie.2022.04.004. Epub 2022 May 14.

Abstract

RNA helicase proteins perform coupled reactions in which cycles of ATP binding and hydrolysis are used to drive local unwinding of double-stranded RNA (dsRNA). For some helicases in the ubiquitous DEAD-box family, these local unwinding events are integral to folding transitions in structured RNAs, and thus these helicases function as RNA chaperones. An important measure of the efficiency of the helicase-catalyzed reaction is the ATP utilization value, which represents the average number of ATP molecules hydrolyzed during RNA unwinding or a chaperone-assisted RNA structural rearrangement. Here we outline procedures that can be used to measure the ATP utilization value in RNA unwinding or folding transitions. As an example of an RNA folding transition, we focus on the refolding of the Tetrahymena thermophila group I intron ribozyme from a long-lived misfolded structure to its native structure, and we outline strategies for adapting this assay to other RNA folding transitions. For a simple dsRNA unwinding event, the ATP utilization value provides a measure of the coupling between the ATPase and RNA unwinding activities, and for a complex RNA structural transition it can give insight into the scope of the rearrangement and the efficiency with which the helicase uses the energy from ATPase cycles to promote the rearrangement.

摘要

RNA 解旋酶蛋白进行偶联反应,其中 ATP 的结合和水解循环被用来驱动双链 RNA(dsRNA)的局部解旋。对于普遍存在的 DEAD 盒家族中的一些解旋酶,这些局部解旋事件是结构 RNA 折叠转变的组成部分,因此这些解旋酶作为 RNA 分子伴侣发挥作用。解旋酶催化反应效率的一个重要衡量标准是 ATP 利用率,它代表在 RNA 解旋或分子伴侣辅助的 RNA 结构重排过程中水解的平均 ATP 分子数。在这里,我们概述了可用于测量 RNA 解旋或折叠转变中 ATP 利用率的程序。作为 RNA 折叠转变的一个例子,我们专注于嗜热四膜虫组 I 内含子核酶从长寿命错误折叠结构到其天然结构的重折叠,并概述了将该测定法适应其他 RNA 折叠转变的策略。对于简单的 dsRNA 解旋事件,ATP 利用率提供了 ATP 酶和 RNA 解旋活性之间偶联的衡量标准,对于复杂的 RNA 结构转变,它可以深入了解重排的范围以及解旋酶利用 ATP 酶循环能量促进重排的效率。

相似文献

1
Measurement of ATP utilization in RNA unwinding and RNA chaperone activities by DEAD-box helicase proteins.
Methods Enzymol. 2022;673:53-76. doi: 10.1016/bs.mie.2022.04.004. Epub 2022 May 14.
2
ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme.
J Biol Chem. 2021 Jan-Jun;296:100132. doi: 10.1074/jbc.RA120.015029. Epub 2020 Dec 5.
3
DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.
Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2928-36. doi: 10.1073/pnas.1404307111. Epub 2014 Jul 7.
4
Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p.
Nature. 2012 Oct 4;490(7418):121-5. doi: 10.1038/nature11402. Epub 2012 Sep 2.
5
The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
J Biol Chem. 2011 Oct 28;286(43):37304-12. doi: 10.1074/jbc.M111.287706. Epub 2011 Aug 30.
6
Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16698-703. doi: 10.1073/pnas.0603127103. Epub 2006 Oct 30.
7
The mechanism of ATP-dependent RNA unwinding by DEAD box proteins.
Biol Chem. 2009 Dec;390(12):1237-50. doi: 10.1515/BC.2009.135.
8
Structural basis of RNA recognition and activation by innate immune receptor RIG-I.
Nature. 2011 Sep 25;479(7373):423-7. doi: 10.1038/nature10537.
9
DEAD-box proteins as RNA helicases and chaperones.
Wiley Interdiscip Rev RNA. 2011 Jan-Feb;2(1):135-52. doi: 10.1002/wrna.50.
10
Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4046-50. doi: 10.1073/pnas.0913081107. Epub 2010 Feb 16.

引用本文的文献

1
Tracking Native Ribozyme Folding with Fluorescence.
Biochemistry. 2023 Nov 21;62(22):3173-3180. doi: 10.1021/acs.biochem.3c00363. Epub 2023 Nov 1.

本文引用的文献

1
The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates.
Annu Rev Biochem. 2022 Jun 21;91:197-219. doi: 10.1146/annurev-biochem-032620-105429. Epub 2022 Mar 18.
2
ATP utilization by a DEAD-box protein during refolding of a misfolded group I intron ribozyme.
J Biol Chem. 2021 Jan-Jun;296:100132. doi: 10.1074/jbc.RA120.015029. Epub 2020 Dec 5.
3
The DDX5/Dbp2 subfamily of DEAD-box RNA helicases.
Wiley Interdiscip Rev RNA. 2019 Mar;10(2):e1519. doi: 10.1002/wrna.1519. Epub 2018 Dec 2.
4
Emerging Roles for Intermolecular RNA-RNA Interactions in RNP Assemblies.
Cell. 2018 Aug 9;174(4):791-802. doi: 10.1016/j.cell.2018.07.023.
5
DEAD-box helicase proteins disrupt RNA tertiary structure through helix capture.
PLoS Biol. 2014 Oct 28;12(10):e1001981. doi: 10.1371/journal.pbio.1001981. eCollection 2014 Oct.
6
Real-time fluorescence assays to monitor duplex unwinding and ATPase activities of helicases.
Nat Protoc. 2014 Jul;9(7):1645-61. doi: 10.1038/nprot.2014.112. Epub 2014 Jun 19.
7
RNA helicase proteins as chaperones and remodelers.
Annu Rev Biochem. 2014;83:697-725. doi: 10.1146/annurev-biochem-060713-035546. Epub 2014 Mar 12.
8
Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo.
Nature. 2014 Jan 30;505(7485):701-5. doi: 10.1038/nature12894. Epub 2013 Dec 15.
9
In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features.
Nature. 2014 Jan 30;505(7485):696-700. doi: 10.1038/nature12756. Epub 2013 Nov 24.
10
Fluorescently labeling synthetic RNAs.
Methods Enzymol. 2013;530:281-97. doi: 10.1016/B978-0-12-420037-1.00015-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验