Suppr超能文献

静态皮肤变形的多重空间频谱成分预测宏观粗糙度感知。

Multiple Spatial Spectral Components of Static Skin Deformation for Predicting Macroscopic Roughness Perception.

出版信息

IEEE Trans Haptics. 2022 Jul-Sep;15(3):646-654. doi: 10.1109/TOH.2022.3199082. Epub 2022 Sep 27.

Abstract

A previous study suggested a relationship between the spatial spectrum of finger pad skin deformation and perception of macroscopic roughness features. This study tested a new hypothesis that macroscopic roughness perception is the result of a weighted linear combination of multiple spatial spectral components of skin deformation. Experiments were conducted by capturing close-up images of finger pad deformation while the pads were pushed onto specimens with macroscopic features. Additionally, the roughness perceptions of these specimens were collected using a magnitude estimation method. The combination of spectral components predicted the roughness perception more accurately than any single spectral component. This suggests that roughness perception is mediated by multiple Gabor filter-like neural systems with different spatial periods, such as visual perception.

摘要

先前的研究表明,指垫皮肤变形的空间频谱与宏观粗糙度特征的感知之间存在关系。本研究检验了一个新假设,即宏观粗糙度感知是皮肤变形多个空间频谱分量的加权线性组合的结果。实验通过在指垫推到具有宏观特征的样本上时捕获指垫变形的特写图像来进行。此外,使用数量估计法收集这些样本的粗糙度感知。与任何单个频谱分量相比,频谱分量的组合更准确地预测了粗糙度感知。这表明粗糙度感知是由多个具有不同空间周期的 Gabor 滤波器样的神经系统介导的,就像视觉感知一样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验