Suppr超能文献

评估和优化利用不完善诊断信息以指导疫情应对的分析框架:在马达加斯加 2017 年鼠疫疫情中的应用。

Analytical framework to evaluate and optimize the use of imperfect diagnostics to inform outbreak response: Application to the 2017 plague epidemic in Madagascar.

机构信息

Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, F-75015 Paris, France.

Quantitative Veterinary Epidemiology, Department of Animal Sciences, Wageningen University and Research, Wageningen, the Netherlands.

出版信息

PLoS Biol. 2022 Aug 15;20(8):e3001736. doi: 10.1371/journal.pbio.3001736. eCollection 2022 Aug.

Abstract

During outbreaks, the lack of diagnostic "gold standard" can mask the true burden of infection in the population and hamper the allocation of resources required for control. Here, we present an analytical framework to evaluate and optimize the use of diagnostics when multiple yet imperfect diagnostic tests are available. We apply it to laboratory results of 2,136 samples, analyzed with 3 diagnostic tests (based on up to 7 diagnostic outcomes), collected during the 2017 pneumonic (PP) and bubonic plague (BP) outbreak in Madagascar, which was unprecedented both in the number of notified cases, clinical presentation, and spatial distribution. The extent of these outbreaks has however remained unclear due to nonoptimal assays. Using latent class methods, we estimate that 7% to 15% of notified cases were Yersinia pestis-infected. Overreporting was highest during the peak of the outbreak and lowest in the rural settings endemic to Y. pestis. Molecular biology methods offered the best compromise between sensitivity and specificity. The specificity of the rapid diagnostic test was relatively low (PP: 82%, BP: 85%), particularly for use in contexts with large quantities of misclassified cases. Comparison with data from a subsequent seasonal Y. pestis outbreak in 2018 reveal better test performance (BP: specificity 99%, sensitivity: 91%), indicating that factors related to the response to a large, explosive outbreak may well have affected test performance. We used our framework to optimize the case classification and derive consolidated epidemic trends. Our approach may help reduce uncertainties in other outbreaks where diagnostics are imperfect.

摘要

在疫情爆发期间,缺乏诊断“金标准”可能会掩盖人群中感染的真实负担,并阻碍控制所需资源的分配。在这里,我们提出了一个分析框架,用于评估和优化在存在多种但不完善的诊断检测方法时的诊断检测使用情况。我们将其应用于 2017 年马达加斯加肺鼠疫(PP)和腺鼠疫(BP)疫情爆发期间收集的 2136 份样本的实验室结果,这些样本使用 3 种诊断检测方法(基于多达 7 种诊断结果)进行了分析。此次疫情在报告病例数量、临床表现和空间分布方面均史无前例。然而,由于检测方法不理想,疫情的严重程度仍不清楚。使用潜在类别方法,我们估计有 7%至 15%的报告病例受到鼠疫耶尔森菌感染。在疫情高峰期报告的病例数量最多,在鼠疫耶尔森菌流行的农村地区报告的病例数量最少。分子生物学方法在灵敏度和特异性之间提供了最佳折衷。快速诊断检测的特异性相对较低(PP:82%,BP:85%),特别是在大量分类错误的情况下使用。与 2018 年随后发生的季节性鼠疫耶尔森菌疫情的数据进行比较显示出更好的检测性能(BP:特异性 99%,灵敏度:91%),这表明与应对大规模、爆发性疫情相关的因素很可能影响了检测性能。我们使用该框架对病例进行分类,以得出综合的流行趋势。我们的方法可以帮助减少其他诊断方法不完善的疫情中的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67ff/9410560/9ae777142705/pbio.3001736.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验