Suppr超能文献

通过叶启发的纳米流体流动实现可持续稳定的钾离子电池

Achieving Sustainable and Stable Potassium-Ion Batteries by Leaf-Bioinspired Nanofluidic Flow.

作者信息

Zhang Xixue, Wu Feng, Lv Xiaowei, Xu Liqianyun, Huang Ruling, Chen Renjie, Li Li

机构信息

Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.

Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, 250300, China.

出版信息

Adv Mater. 2022 Sep;34(39):e2204370. doi: 10.1002/adma.202204370. Epub 2022 Aug 29.

Abstract

In nature, living systems have evolved integrated structures, matching optimized nanofluidics to adapt to external conditions. In rechargeable batteries, high-capacity electrodes are often plagued by the crucial and universal bottleneck of dissolution and shuttle of active substance into electrolyte, posing obstacles of inevitable capacity degradation. Introducing the concept of intelligent nanofluidics to electrodes, a leaf-bioinspired electrode configuration with hierarchical architecture to tackle this problem is proposed. This integrated structure with fine-tuned surface pores and unobstructed interior porous media, can spatially control the anisotropic nanofluidic flux, in an efficient and self-protectable way: tailoring the outflow across the electrode's surface and free transport in interior, to ensure speedy and stable energy conversion. As proofs of concept, applications of sustainable electrodes rejuvenated from fallen leaf and spent commercial batteries, are designed with leaf-bioinspired architecture. Both KCoS and KS battery systems show advanced steady cycling with effectively mitigated shuttle issues in this smart architecture (0.15% and 0.21% capacity decay per cycle), even at high areal mass loading, when compared with open porous structure (0.60% and 0.39%). This work may pave a new way from a biomimetic view to integrated electrode engineering with regulated surface shielding to conquer the universal dissolution-shuttle problems facing high-capacity materials.

摘要

在自然界中,生命系统已经进化出了集成结构,将优化的纳米流体学相匹配以适应外部条件。在可充电电池中,高容量电极常常受到活性物质溶解并穿梭到电解质这一关键且普遍存在的瓶颈问题的困扰,这构成了容量不可避免地下降的障碍。将智能纳米流体学的概念引入电极,提出了一种受叶片启发的具有分层结构的电极配置来解决这个问题。这种具有微调表面孔隙和畅通内部多孔介质的集成结构,可以以高效且自我保护的方式在空间上控制各向异性的纳米流体通量:调整电极表面的流出以及内部的自由传输,以确保快速且稳定的能量转换。作为概念验证,设计了从落叶和废旧商业电池中再生的可持续电极的应用,并采用了受叶片启发的结构。与开放多孔结构相比(每循环容量衰减0.60%和0.39%),即使在高面质量负载下,KCoS和KS电池系统在这种智能结构中都表现出先进的稳定循环,有效缓解了穿梭问题(每循环容量衰减0.15%和0.21%)。这项工作可能从仿生学的角度为集成电极工程开辟一条新途径,通过调节表面屏蔽来克服高容量材料面临的普遍的溶解 - 穿梭问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验