Suppr超能文献

X 染色体合并时间在表亲近亲婚配下的极限分布。

Limiting distribution of X-chromosomal coalescence times under first-cousin consanguineous mating.

机构信息

Department of Genetics, Stanford University, Stanford, CA 94305, USA.

Department of Genetics, Stanford University, Stanford, CA 94305, USA.

出版信息

Theor Popul Biol. 2022 Oct;147:1-15. doi: 10.1016/j.tpb.2022.07.002. Epub 2022 Aug 13.

Abstract

By providing additional opportunities for coalescence within families, the presence of consanguineous unions in a population reduces coalescence times relative to non-consanguineous populations. First-cousin consanguinity can take one of six forms differing in the configuration of sexes in the pedigree of the male and female cousins who join in a consanguineous union: patrilateral parallel, patrilateral cross, matrilateral parallel, matrilateral cross, bilateral parallel, and bilateral cross. Considering populations with each of the six types of first-cousin consanguinity individually and a population with a mixture of the four unilateral types, we examine coalescent models of consanguinity. We previously computed, for first-cousin consanguinity models, the mean coalescence time for X-chromosomal loci and the limiting distribution of coalescence times for autosomal loci. Here, we use the separation-of-time-scales approach to obtain the limiting distribution of coalescence times for X-chromosomal loci. This limiting distribution has an instantaneous coalescence probability that depends on the probability that a union is consanguineous; lineages that do not coalesce instantaneously coalesce according to an exponential distribution. We study the effects on the coalescence time distribution of the type of first-cousin consanguinity, showing that patrilateral-parallel and patrilateral-cross consanguinity have no effect on X-chromosomal coalescence time distributions and that matrilateral-parallel consanguinity decreases coalescence times to a greater extent than does matrilateral-cross consanguinity.

摘要

通过为家庭内的融合提供更多机会,人群中血缘婚姻的存在会降低与非血缘婚姻人群相比的融合时间。表亲血缘婚姻有六种形式,在男性和女性表亲的系谱中,他们的性别组合不同:父系平行、父系交叉、母系平行、母系交叉、双边平行和双边交叉。考虑到每种类型的表亲血缘婚姻的人群,以及混合了四种单侧类型的人群,我们研究了血缘婚姻的融合模型。我们之前为表亲血缘婚姻模型计算了 X 染色体基因座的平均融合时间和常染色体基因座融合时间的极限分布。在这里,我们使用时间尺度分离方法来获得 X 染色体基因座融合时间的极限分布。这个极限分布有一个瞬时融合概率,取决于联盟是血缘婚姻的概率;没有立即融合的谱系根据指数分布融合。我们研究了表亲血缘婚姻类型对融合时间分布的影响,表明父系平行和父系交叉血缘婚姻对 X 染色体融合时间分布没有影响,而母系平行血缘婚姻比母系交叉血缘婚姻更能减少融合时间。

相似文献

1
Limiting distribution of X-chromosomal coalescence times under first-cousin consanguineous mating.
Theor Popul Biol. 2022 Oct;147:1-15. doi: 10.1016/j.tpb.2022.07.002. Epub 2022 Aug 13.
2
The effect of consanguinity on coalescence times on the X chromosome.
Theor Popul Biol. 2021 Aug;140:32-43. doi: 10.1016/j.tpb.2021.03.004. Epub 2021 Apr 24.
4
Variance and limiting distribution of coalescence times in a diploid model of a consanguineous population.
Theor Popul Biol. 2021 Jun;139:50-65. doi: 10.1016/j.tpb.2021.02.002. Epub 2021 Mar 3.
5
Consanguinity as a determinant of reproductive behaviour and mortality in Pakistan.
Int J Epidemiol. 1993 Jun;22(3):463-7. doi: 10.1093/ije/22.3.463.
6
Consanguineous marriages in the United Arab Emirates.
J Biosoc Sci. 1997 Oct;29(4):491-7. doi: 10.1017/s0021932097004914.
7
Consanguineous marriage in Jordan.
Am J Med Genet. 1992 Jul 15;43(5):769-75. doi: 10.1002/ajmg.1320430502.
8
Consanguineous marriages in Beirut: time trends, spatial distribution.
Soc Biol. 1988 Fall-Winter;35(3-4):324-30. doi: 10.1080/19485565.1988.9988710.
9
Consanguineous marriage in Iran.
Ann Hum Biol. 2004 Mar-Apr;31(2):263-9. doi: 10.1080/03014460310001652211.
10
Consanguineous marriages and marriage payment: a study among three south Indian caste groups.
Ann Hum Biol. 1988 Jul-Aug;15(4):263-8. doi: 10.1080/03014468800009731.

引用本文的文献

本文引用的文献

2
Fine-scale population structure and demographic history of British Pakistanis.
Nat Commun. 2021 Dec 10;12(1):7189. doi: 10.1038/s41467-021-27394-2.
3
The effect of consanguinity on coalescence times on the X chromosome.
Theor Popul Biol. 2021 Aug;140:32-43. doi: 10.1016/j.tpb.2021.03.004. Epub 2021 Apr 24.
4
Variance and limiting distribution of coalescence times in a diploid model of a consanguineous population.
Theor Popul Biol. 2021 Jun;139:50-65. doi: 10.1016/j.tpb.2021.02.002. Epub 2021 Mar 3.
5
Associations of autozygosity with a broad range of human phenotypes.
Nat Commun. 2019 Oct 31;10(1):4957. doi: 10.1038/s41467-019-12283-6.
6
The Effect of Consanguinity on Between-Individual Identity-by-Descent Sharing.
Genetics. 2019 May;212(1):305-316. doi: 10.1534/genetics.119.302136. Epub 2019 Mar 29.
7
Relationships between estimated autozygosity and complex traits in the UK Biobank.
PLoS Genet. 2018 Jul 27;14(7):e1007556. doi: 10.1371/journal.pgen.1007556. eCollection 2018 Jul.
8
Runs of homozygosity: windows into population history and trait architecture.
Nat Rev Genet. 2018 Apr;19(4):220-234. doi: 10.1038/nrg.2017.109. Epub 2018 Jan 15.
9
Detection and quantification of inbreeding depression for complex traits from SNP data.
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8602-8607. doi: 10.1073/pnas.1621096114. Epub 2017 Jul 26.
10
Accurate Non-parametric Estimation of Recent Effective Population Size from Segments of Identity by Descent.
Am J Hum Genet. 2015 Sep 3;97(3):404-18. doi: 10.1016/j.ajhg.2015.07.012. Epub 2015 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验