Braga Ian, Wardil Lucas
Departamento de Física, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
Phys Rev E. 2022 Jul;106(1-1):014112. doi: 10.1103/PhysRevE.106.014112.
The evolution of cooperation has gained more attention after Smith introduced game theory in the study of evolutionary biology. Subsequent works have extensively explained this phenomenon, consistently showing the importance of spatial structure for the evolution of cooperation. Here we analyze the effect of stochasticity on the evolution of cooperation in group-structured populations. We find a simple formula for the fixation probability of cooperators and show that cooperation can be favored by selection if a condition similar to Hamilton's rule is satisfied, which is also valid for strong selection and high migration. In fact, cooperation can be favored even in the absence of population viscosity and in the limit of an infinite number of finite-size groups. We discuss the importance of stochastic fluctuations in helping cooperation. We argue that this may be a general principle because fluctuations favoring the cooperators are often much more impactful than those favoring the defectors.
在史密斯将博弈论引入进化生物学研究之后,合作的进化受到了更多关注。后续研究广泛解释了这一现象,始终表明空间结构对合作进化的重要性。在此,我们分析了随机性对群体结构种群中合作进化的影响。我们找到了一个关于合作者固定概率的简单公式,并表明如果满足类似于汉密尔顿法则的条件,合作就会受到选择的青睐,这对于强选择和高迁移率情况同样有效。事实上,即使在没有种群粘性且在无限多个有限规模群体的极限情况下,合作也可能受到青睐。我们讨论了随机波动在促进合作方面的重要性。我们认为这可能是一个普遍原则,因为有利于合作者的波动往往比有利于背叛者的波动影响更大。