Department of Mechanical Engineering, Universidad Técnica Federico Santa María, 2390123 Valparaíso, Chile.
Centro Científico Tecnológico de Valparaíso (CCTVal), 2390123 Valparaíso, Chile.
Nanoscale. 2022 Sep 2;14(34):12232-12237. doi: 10.1039/d2nr02526d.
Electrostatic interactions are crucial for the assembly, disassembly and stability of proteinaceous viral capsids. Moreover, at the molecular scale, elucidating the organization and structure of the capsid proteins in response to an approaching nanoprobe is a major challenge in biomacromolecular research. Here, we report on a generalized electrostatic model, based on the Poisson-Boltzmann equation, that quantifies the subnanometric electrostatic interactions between an AFM tip and a proteinaceous capsid from molecular snapshots. This allows us to describe the contributions of specific amino acids and atoms to the interaction force. We show validation results in terms of total electrostatic forces with previous semi-empirical generalized models at available length scales ( > 1 nm). Then, we studied the interaction of the Zika capsid with conical and spherical AFM tips in a tomography-type analysis to identify the most important residues and atoms, showing the localized nature of the interaction. This method can be employed for the interpretation of force microscopy experiments in fundamental virological characterization and in diverse nanomedicine applications, where specific regions of the protein cages are aimed to electrostatically interact with molecular sized functionalized inhibitors, or tailoring protein-cage functional properties for nucleic acid delivery.
静电相互作用对于蛋白质病毒衣壳的组装、拆卸和稳定性至关重要。此外,在分子尺度上,阐明衣壳蛋白在接近纳米探针时的组织和结构是生物大分子研究中的一个主要挑战。在这里,我们报告了一种基于泊松-玻尔兹曼方程的广义静电模型,该模型定量描述了原子力显微镜针尖与蛋白质衣壳之间的亚纳米级静电相互作用,从分子快照中获取。这使我们能够描述特定氨基酸和原子对相互作用力的贡献。我们在可用长度尺度 (>1nm) 上展示了与先前半经验广义模型的总静电力的验证结果。然后,我们在层析分析中研究了寨卡病毒衣壳与锥形和球形原子力显微镜针尖的相互作用,以确定最重要的残基和原子,显示出相互作用的局部性质。这种方法可用于解释基础病毒学特性和各种纳米医学应用中的力显微镜实验,其中蛋白质笼的特定区域旨在与分子大小的功能化抑制剂静电相互作用,或定制蛋白质笼的功能特性以进行核酸传递。