Liu Bowen, Wang Sihong, Feng Ruohan, Ni Yuanman, Song Fang, Liu Qinglei
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
ACS Appl Mater Interfaces. 2022 Aug 31;14(34):38739-38749. doi: 10.1021/acsami.2c09271. Epub 2022 Aug 17.
Electrocatalysts for the oxygen reduction reaction (ORR) play a central role in fuel cells and zinc-air batteries. Bimetal single atoms and nanoparticle hybrids are emerging ORR electrocatalysts, superior to the most exploited unary metal single-atom catalysts (SACs). Here, we report bimetal SAC-based nanofiber networks of CoFe@Co/Fe-SAC for efficient ORR electrocatalysis and zinc-air batteries. A facile and easy-to-scale-up process is developed, and the versatility is validated in three hybrids. Strong electronic interaction is revealed between bimetal single atoms and alloy nanoparticles, leading to improved catalytic performances for ORR. Specifically, the CoFe@Co/Fe-SAC hybrids exhibit a half-wave potential of 0.841 V in a basic electrolyte, comparable to the Pt/C electrocatalyst. Assembled in a zinc-air battery, a CoFe@Co/Fe-SAC hybrid-based cell demonstrates a power density 1.8 times higher than the benchmark Pt/C-IrO-based one, and it is stable for 150 cycles galvanostatic charge/discharge. The superior device performance is attributed to the appealing intrinsic activity, the carbon shielding effect for anti-leaching, and the hierarchical porous networks for large accessibility of active sites and favorable mass transport. Theoretical calculations suggest that alloy nanoparticles significantly improved the intrinsic catalytic activity of Fe single-atom sites at the expense of slightly lowering the activity of Co single-atom sites. This work presents a versatile process for the mass production of efficient composite electrocatalysts and highlights the power of bimetal single-atom-based hybrids and hierarchically porous structures for ORR device performances.
用于氧还原反应(ORR)的电催化剂在燃料电池和锌空气电池中起着核心作用。双金属单原子与纳米颗粒的杂化物是新兴的ORR电催化剂,优于目前应用最广泛的单金属单原子催化剂(SAC)。在此,我们报道了基于双金属SAC的CoFe@Co/Fe-SAC纳米纤维网络,用于高效ORR电催化和锌空气电池。我们开发了一种简便且易于放大的工艺,并在三种杂化物中验证了其通用性。研究揭示了双金属单原子与合金纳米颗粒之间存在强电子相互作用,从而提高了ORR的催化性能。具体而言,CoFe@Co/Fe-SAC杂化物在碱性电解质中的半波电位为0.841 V,与Pt/C电催化剂相当。组装在锌空气电池中,基于CoFe@Co/Fe-SAC杂化物的电池表现出的功率密度比基于基准Pt/C-IrO的电池高1.8倍,并且在恒电流充/放电150次循环中保持稳定。优异的器件性能归因于其吸引人的本征活性、防止浸出的碳屏蔽效应以及有利于活性位点大量暴露和良好质量传输的分级多孔网络。理论计算表明,合金纳米颗粒显著提高了Fe单原子位点的本征催化活性,但略微降低了Co单原子位点的活性。这项工作提出了一种大规模生产高效复合电催化剂的通用工艺,并突出了基于双金属单原子的杂化物和分级多孔结构对ORR器件性能的作用。