Department of Mechanical Engineering, Purdue University, West Lafayette, USA.
Birck Nanotechnology Center, West Lafayette, USA.
Sci Rep. 2022 Aug 17;12(1):13927. doi: 10.1038/s41598-022-17495-3.
The problematic combination of a rising prevalence of skin and soft tissue infections and the growing rate of life-threatening antibiotic resistant infections presents an urgent, unmet need for the healthcare industry. These evolutionary resistances originate from mutations in the bacterial cell walls which prevent effective diffusion of antibiotics. Gram-negative bacteria are of special consideration due to the natural resistance to many common antibiotics due to the unique bilayer structure of the cell wall. The system developed here provides one solution to this problem through a wearable therapy that delivers and utilizes gaseous ozone as an adjunct therapy with topical antibiotics through a novel dressing with drug-eluting nanofibers (NFs). This technology drastically increases the sensitivity of Gram-negative bacteria to common antibiotics by using oxidative ozone to bypass resistances created by the bacterial cell wall. To enable simple and effective application of adjunct therapy, ozone delivery and topical antibiotics have been integrated into a single application patch. The drug delivery NFs are generated via electrospinning in a fast-dissolve PVA mat without inducing decreasing gas permeability of the dressing. A systematic study found ozone generation at 4 mg/h provided optimal ozone levels for high antimicrobial performance with minimal cytotoxicity. This ozone treatment was used with adjunct therapy delivered by the system in vitro. Results showed complete eradication of Gram-negative bacteria with ozone and antibiotics typically used only for Gram-positive bacteria, which showed the strength of ozone as an enabling adjunct treatment option to sensitize bacteria strains to otherwise ineffective antibiotics. Furthermore, the treatment is shown through biocompatibility testing to exhibit no cytotoxic effect on human fibroblast cells.
皮肤和软组织感染的发病率不断上升,危及生命的抗生素耐药感染的增长率也不断上升,这对医疗保健行业提出了一个紧迫的、尚未满足的需求。这些进化产生的耐药性源于细菌细胞壁的突变,这些突变阻止了抗生素的有效扩散。由于细胞壁的双层结构,革兰氏阴性菌具有特殊的考虑因素,因为它们天然对许多常见抗生素具有耐药性。这里开发的系统通过一种可穿戴疗法提供了一种解决方案,该疗法通过一种具有药物洗脱纳米纤维 (NFs) 的新型敷料,输送和利用气态臭氧作为局部抗生素的辅助疗法。这种技术通过使用氧化臭氧绕过细菌细胞壁产生的耐药性,极大地提高了革兰氏阴性菌对常见抗生素的敏感性。为了实现辅助治疗的简单有效应用,臭氧输送和局部抗生素已整合到单个应用补丁中。通过静电纺丝在快速溶解的 PVA 垫中生成药物输送 NFs,而不会降低敷料的透气性。一项系统研究发现,以 4mg/h 的速度产生臭氧可提供最佳的臭氧水平,以实现高抗菌性能和最小的细胞毒性。在体外,使用该系统提供的辅助疗法进行了臭氧处理。结果表明,臭氧和抗生素联合治疗可彻底根除革兰氏阴性菌,而通常仅用于革兰氏阳性菌的抗生素也具有这种效果,这表明臭氧作为一种辅助治疗选择,可以增强细菌对其他无效抗生素的敏感性。此外,通过生物相容性测试表明,该治疗对人成纤维细胞没有细胞毒性作用。