Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy.
Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
J Antimicrob Chemother. 2022 Sep 30;77(10):2596-2621. doi: 10.1093/jac/dkac263.
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
恶唑烷酮类(利奈唑胺和替加环素)是用于治疗人类由耐多药革兰阳性菌引起的严重感染的最后手段抗菌药物。它们结合到细菌核糖体的肽基转移酶中心,抑制蛋白质合成。尽管大多数革兰阳性菌仍然对恶唑烷酮类敏感,但已在全球范围内报告了耐药分离株。除了影响大多数 23S rDNA 基因和选定核糖体蛋白的突变外,耐药基因(cfr 和 cfr 样、optrA 和 poxtA)的获得也起着关键作用,这些耐药基因通常与移动遗传元件[如非接合和接合质粒、转座子、整合和接合元件(ICEs)、噬菌体和可转位单位]有关。在这篇综述中,我们简要总结了恶唑烷酮类耐药机制的最新知识,并概述了革兰氏阳性菌和革兰氏阴性菌中携带恶唑烷酮类耐药基因的移动遗传元件的多样性。