Taipala Erika, Pfitzer Jeremiah C, Hellums Morgan, Reed Miranda N, Gramlich Michael W
Department of Physics, Auburn University, Auburn, AL, United States.
Harrison School of Pharmacy, Auburn University, Auburn, AL, United States.
Front Synaptic Neurosci. 2022 Aug 3;14:925546. doi: 10.3389/fnsyn.2022.925546. eCollection 2022.
The molecular pathways that contribute to the onset of symptoms in tauopathy models, including Alzheimer's disease (AD), are difficult to distinguish because multiple changes can happen simultaneously at different stages of disease progression. Understanding early synaptic alterations and their supporting molecular pathways is essential to develop better pharmacological targets to treat AD. Here, we focus on an early onset rTg(Tau )4510 tauopathy mouse model that exhibits hyperexcitability in hippocampal neurons of adult mice that is correlated with presynaptic changes and increased extracellular glutamate levels. However, it is not clear if increased extracellular glutamate is caused by presynaptic changes alone, or if presynaptic changes are a contributing factor among other factors. To determine whether pathogenic tau alters presynaptic function and glutamate release, we studied cultured hippocampal neurons at 14-18 days (DIV) from animals of both sexes to measure presynaptic changes in tau positive mice. We observed that presynaptic vesicles exhibit increased vesicular glutamate transporter 1 (VGlut1) using immunohistochemistry of fixed cells and an established pH-sensitive green fluorescent protein approach. We show that tau positive neurons exhibit a 40% increase in VGlut1 per vesicle compared to tau negative littermates. Further, we use the extracellular glutamate reporter iGluSnFR to show that increased VGlut1 per vesicle directly translates into a 40% increase in extracellular glutamate. Together, these results show that increased extracellular glutamate levels observed in tau mice are not caused by increased vesicle exocytosis probability but rather are directly related to increased VGlut1 transporters per synaptic vesicle.
在包括阿尔茨海默病(AD)在内的tau蛋白病模型中,导致症状出现的分子途径难以区分,因为在疾病进展的不同阶段可能会同时发生多种变化。了解早期突触改变及其支持的分子途径对于开发更好的治疗AD的药理学靶点至关重要。在这里,我们专注于一种早发性rTg(Tau)4510 tau蛋白病小鼠模型,该模型在成年小鼠的海马神经元中表现出过度兴奋,这与突触前变化和细胞外谷氨酸水平升高相关。然而,尚不清楚细胞外谷氨酸水平升高是否仅由突触前变化引起,或者突触前变化是否是其他因素中的一个促成因素。为了确定致病性tau蛋白是否会改变突触前功能和谷氨酸释放,我们研究了来自两性动物的14 - 18天(DIV)培养海马神经元,以测量tau阳性小鼠的突触前变化。我们通过固定细胞的免疫组织化学和一种成熟的pH敏感绿色荧光蛋白方法观察到,突触前囊泡的囊泡谷氨酸转运体1(VGlut1)增加。我们发现,与tau阴性同窝小鼠相比,tau阳性神经元每个囊泡的VGlut1增加了40%。此外,我们使用细胞外谷氨酸报告基因iGluSnFR表明,每个囊泡VGlut1的增加直接导致细胞外谷氨酸增加40%。总之,这些结果表明,在tau蛋白病小鼠中观察到的细胞外谷氨酸水平升高不是由囊泡胞吐概率增加引起的,而是与每个突触囊泡中VGlut1转运体的增加直接相关。