Xu Jianqiao, Xu Zhuohan, Shi Bing
Department of Information Security, Naval University of Engineering, Wuhan, China.
School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China.
Front Bioeng Biotechnol. 2022 Aug 4;10:908056. doi: 10.3389/fbioe.2022.908056. eCollection 2022.
The rapid development of mobile device applications put tremendous pressure on edge nodes with limited computing capabilities, which may cause poor user experience. To solve this problem, collaborative cloud-edge computing is proposed. In the cloud-edge computing, an edge node with limited local resources can rent more resources from a cloud node. According to the nature of cloud service, cloud service can be divided into private cloud and public cloud. In a private cloud environment, the edge node must allocate resources between the cloud node and the edge node. In a public cloud environment, since public cloud service providers offer various pricing modes for users' different computing demands, the edge node also must select the appropriate pricing mode of cloud service; which is a sequential decision problem. In this stydy, we model it as a Markov decision process and parameterized action Markov decision process, and we propose a resource allocation algorithm cost efficient resource allocation with private cloud (CERAI) and cost efficient resource allocation with public cloud (CERAU) in the collaborative cloud-edge environment based on the deep reinforcement learning algorithm deep deterministic policy gradient and P-DQN. Next, we evaluated CERAI and CERAU against three typical resource allocation algorithms based on synthetic and real data of Google datasets. The experimental results demonstrate that CERAI and CERAU can effectively reduce the long-term operating cost of collaborative cloud-side computing in various demanding settings. Our analysis can provide some useful insights for enterprises to design the resource allocation strategy in the collaborative cloud-side computing system.
移动设备应用程序的快速发展给计算能力有限的边缘节点带来了巨大压力,这可能会导致用户体验不佳。为了解决这个问题,提出了协作云边缘计算。在云边缘计算中,本地资源有限的边缘节点可以从云节点租用更多资源。根据云服务的性质,云服务可分为私有云和公共云。在私有云环境中,边缘节点必须在云节点和边缘节点之间分配资源。在公共云环境中,由于公共云服务提供商针对用户的不同计算需求提供了各种定价模式,边缘节点也必须选择合适的云服务定价模式;这是一个顺序决策问题。在本研究中,我们将其建模为马尔可夫决策过程和参数化动作马尔可夫决策过程,并基于深度强化学习算法深度确定性策略梯度和P-DQN,在协作云边缘环境中提出了一种私有云成本高效资源分配算法(CERAI)和公共云成本高效资源分配算法(CERAU)。接下来,我们基于谷歌数据集的合成数据和真实数据,将CERAI和CERAU与三种典型的资源分配算法进行了评估比较。实验结果表明,CERAI和CERAU能够在各种苛刻的设置下有效降低协作云边计算的长期运营成本。我们的分析可以为企业在协作云边计算系统中设计资源分配策略提供一些有用的见解。