Suppr超能文献

VP30 磷酸化在埃博拉病毒核衣壳组装和运输中的作用。

Role of VP30 Phosphorylation in Ebola Virus Nucleocapsid Assembly and Transport.

机构信息

Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto Universitygrid.258799.8, Kyoto, Japan.

Department of Virology I, National Institute of Infectious Diseasesgrid.410795.e, Tokyo, Japan.

出版信息

J Virol. 2022 Sep 14;96(17):e0108322. doi: 10.1128/jvi.01083-22. Epub 2022 Aug 22.

Abstract

Ebola virus (EBOV) VP30 regulates viral genome transcription and replication by switching its phosphorylation status. However, the importance of VP30 phosphorylation and dephosphorylation in other viral replication processes such as nucleocapsid and virion assembly is unclear. Interestingly, VP30 is predominantly dephosphorylated by cellular phosphatases in viral inclusions, while it is phosphorylated in the released virions. Thus, uncertainties regarding how VP30 phosphorylation in nucleocapsids is achieved and whether VP30 phosphorylation provides any advantages in later steps in viral replication have arisen. In the present study, to characterize the roles of VP30 phosphorylation in nucleocapsid formation, we used electron microscopic analyses and live cell imaging systems. We identified VP30 localized to the surface of protrusions surrounding nucleoprotein (NP)-forming helical structures in the nucleocapsid, suggesting the involvement in assembly and transport of nucleocapsids. Interestingly, VP30 phosphorylation facilitated its association with nucleocapsid-like structures (NCLSs). On the contrary, VP30 phosphorylation does not influence the transport characteristics and NCLS number leaving from and coming back into viral inclusions, indicating that the phosphorylation status of VP30 is not a prerequisite for NCLS departure. Moreover, the phosphorylation status of VP30 did not cause major differences in nucleocapsid transport in authentic EBOV-infected cells. In the following budding step, the association of VP30 and its phosphorylation status did not influence the budding efficiency of virus-like particles. Taken together, it is plausible that EBOV may utilize the phosphorylation of VP30 for its selective association with nucleocapsids, without affecting nucleocapsid transport and virion budding processes. Ebola virus (EBOV) causes severe fevers with unusually high case fatality rates. The nucleocapsid provides the template for viral genome transcription and replication. Thus, understanding the regulatory mechanism behind its formation is important for the development of novel therapeutic approaches. Previously, we established a live-cell imaging system based on the ectopic expression of viral fluorescent fusion proteins, allowing the visualization and characterization of intracytoplasmic transport of nucleocapsid-like structures. EBOV VP30 is an essential transcriptional factor for viral genome synthesis, and, although its role in viral genome transcription and replication is well understood, the functional importance of VP30 phosphorylation in assembly of nucleocapsids is still unclear. Our work determines the localization of VP30 at the surface of ruffled nucleocapsids, which differs from the localization of polymerase in EBOV-infected cells. This study sheds light on the novel role of VP30 phosphorylation in nucleocapsid assembly, which is an important prerequisite for virion formation.

摘要

埃博拉病毒(EBOV)VP30 通过改变其磷酸化状态来调节病毒基因组的转录和复制。然而,VP30 磷酸化和去磷酸化在核衣壳和病毒粒子组装等其他病毒复制过程中的重要性尚不清楚。有趣的是,VP30 在病毒包含体中主要被细胞磷酸酶去磷酸化,而在释放的病毒粒子中则被磷酸化。因此,关于核衣壳中 VP30 磷酸化是如何实现的,以及 VP30 磷酸化是否在病毒复制的后续步骤中提供任何优势,存在不确定性。在本研究中,为了表征 VP30 磷酸化在核衣壳形成中的作用,我们使用了电子显微镜分析和活细胞成像系统。我们发现 VP30 定位于核衣壳中围绕核蛋白(NP)形成螺旋结构的突起表面,表明其参与了核衣壳的组装和运输。有趣的是,VP30 磷酸化促进了它与核衣壳样结构(NCLS)的结合。相反,VP30 磷酸化并不影响从病毒包含体中离开和返回的 NCLS 的运输特性和数量,表明 VP30 的磷酸化状态不是 NCLS 离开的前提条件。此外,VP30 的磷酸化状态并没有导致在真实的 EBOV 感染细胞中核衣壳运输的显著差异。在随后的出芽步骤中,VP30 的结合及其磷酸化状态并不影响病毒样颗粒的出芽效率。总的来说,EBOV 可能利用 VP30 的磷酸化来选择性地与核衣壳结合,而不影响核衣壳的运输和病毒粒子的出芽过程。

埃博拉病毒(EBOV)引起高热,死亡率异常高。核衣壳为病毒基因组转录和复制提供模板。因此,了解其形成的调控机制对于开发新的治疗方法很重要。以前,我们建立了一种基于病毒荧光融合蛋白异位表达的活细胞成像系统,允许对核衣壳样结构的胞质内运输进行可视化和表征。EBOV VP30 是病毒基因组合成的必需转录因子,尽管其在病毒基因组转录和复制中的作用已得到很好的理解,但 VP30 磷酸化在核衣壳组装中的功能重要性仍不清楚。我们的工作确定了 VP30 在皱缩核衣壳表面的定位,这与 EBOV 感染细胞中聚合酶的定位不同。这项研究揭示了 VP30 磷酸化在核衣壳组装中的新作用,这是形成病毒粒子的重要前提。

相似文献

1
Role of VP30 Phosphorylation in Ebola Virus Nucleocapsid Assembly and Transport.
J Virol. 2022 Sep 14;96(17):e0108322. doi: 10.1128/jvi.01083-22. Epub 2022 Aug 22.
2
Transport of Ebolavirus Nucleocapsids Is Dependent on Actin Polymerization: Live-Cell Imaging Analysis of Ebolavirus-Infected Cells.
J Infect Dis. 2015 Oct 1;212 Suppl 2:S160-6. doi: 10.1093/infdis/jiv083. Epub 2015 Jun 2.
3
Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle.
J Virol. 2016 Apr 29;90(10):4914-4925. doi: 10.1128/JVI.03257-15. Print 2016 May 15.
5
RNA Binding of Ebola Virus VP30 Is Essential for Activating Viral Transcription.
J Virol. 2016 Jul 27;90(16):7481-7496. doi: 10.1128/JVI.00271-16. Print 2016 Aug 15.
7
Serine-Arginine Protein Kinase 1 Regulates Ebola Virus Transcription.
mBio. 2020 Feb 25;11(1):e02565-19. doi: 10.1128/mBio.02565-19.
9
Role of protein phosphatase 1 in dephosphorylation of Ebola virus VP30 protein and its targeting for the inhibition of viral transcription.
J Biol Chem. 2014 Aug 15;289(33):22723-22738. doi: 10.1074/jbc.M114.575050. Epub 2014 Jun 16.
10
Intracellular Ebola virus nucleocapsid assembly revealed by in situ cryo-electron tomography.
Cell. 2024 Oct 3;187(20):5587-5603.e19. doi: 10.1016/j.cell.2024.08.044. Epub 2024 Sep 17.

引用本文的文献

4
The cellular protein phosphatase 2A is a crucial host factor for Marburg virus transcription.
J Virol. 2024 Sep 17;98(9):e0104724. doi: 10.1128/jvi.01047-24. Epub 2024 Aug 28.
5
Hippo signaling pathway regulates Ebola virus transcription and egress.
Nat Commun. 2024 Aug 13;15(1):6953. doi: 10.1038/s41467-024-51356-z.
6
Molecular insights into the Ebola virus life cycle.
Nat Microbiol. 2024 Jun;9(6):1417-1426. doi: 10.1038/s41564-024-01703-z. Epub 2024 May 23.
7
Navigating the Complex Landscape of Ebola Infection Treatment: A Review of Emerging Pharmacological Approaches.
Infect Dis Ther. 2024 Jan;13(1):21-55. doi: 10.1007/s40121-023-00913-y. Epub 2024 Jan 19.

本文引用的文献

3
Serine-Arginine Protein Kinase 1 Regulates Ebola Virus Transcription.
mBio. 2020 Feb 25;11(1):e02565-19. doi: 10.1128/mBio.02565-19.
5
Identification of a human respiratory syncytial virus phosphoprotein domain required for virus-like-particle formation.
Virology. 2019 Jun;532:48-54. doi: 10.1016/j.virol.2019.04.001. Epub 2019 Apr 9.
6
Cryo-EM structure of the Ebola virus nucleoprotein-RNA complex at 3.6 Å resolution.
Nature. 2018 Nov;563(7729):137-140. doi: 10.1038/s41586-018-0630-0. Epub 2018 Oct 17.
9
Taxonomy of the order Mononegavirales: update 2018.
Arch Virol. 2018 Aug;163(8):2283-2294. doi: 10.1007/s00705-018-3814-x. Epub 2018 Apr 11.
10
Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport.
Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1075-1080. doi: 10.1073/pnas.1712263115. Epub 2018 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验