Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Physics Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Environ Sci Pollut Res Int. 2023 Oct;30(49):106755-106773. doi: 10.1007/s11356-022-22477-z. Epub 2022 Aug 22.
The powder form of the new nanofiber composite of poly(acrylonitrile-co-methylmethacrylate) (P(An-MMa)) with zirconium dioxide (ZrO) was synthesized using the sol-gel method and subsequently converted to a thin film [P(An-MMa)/ZrO] via the physical vapor deposition (PVD) technique. Numerous characterization techniques, including Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and ultraviolet-visible (UV-Vis) optical spectroscopy, were used to characterize [P(An-MMa)/ZrO]. Additionally, using density functional theory (DFT), optimization via time-dependent density functional theory (TD-DFT/DMol) and Cambridge Serial Total Energy Bundle (TD-DFT/CASTEP) was developed. The TD-DFT calculations accurately matched the observed XRD and Raman spectra and validated the molecular structure of the examined materials. The average crystallite size of [P(An-MMa)/ZrO], as determined by XRD calculations, is 171.04 nm. The SEM image depicts a one-dimensional morphological structure made up of tightly packed fibrous nanowires or brushes. The optical properties of the films were determined using optical absorbance spectrophotometric results in the 200-850-nm wavelength range. The optical energy bandgaps computed using Tauc's equation for [P(An-MMa)/ZrO] are 2.352 and 2.253 eV, respectively, whereas the isolated molecule of the composite [P(An-MMa)/ZrO] has a bandgap of 2.415 eV as determined by TD-DFT/DMol. The optical characteristics predicted by CASTEP in TD-DFT are in good agreement with the experimental values. The investigated large optical energy bandgap nanofiber composite is advantageous for some energy storage applications.
采用溶胶-凝胶法合成了聚(丙烯腈-甲基丙烯酸甲酯)(P(An-MMa))与二氧化锆(ZrO)的新型纳米纤维复合材料的粉末形式,随后通过物理气相沉积(PVD)技术将其转化为薄膜[P(An-MMa)/ZrO]。使用拉曼光谱、X 射线衍射(XRD)、热重分析(TGA)、扫描电子显微镜(SEM)和紫外-可见(UV-Vis)光谱等多种表征技术对[P(An-MMa)/ZrO]进行了表征。此外,还使用密度泛函理论(DFT)通过时间相关密度泛函理论(TD-DFT/DMol)和剑桥系列总能量束(TD-DFT/CASTEP)进行了优化。TD-DFT 计算准确地匹配了观察到的 XRD 和拉曼光谱,并验证了所研究材料的分子结构。通过 XRD 计算得出[P(An-MMa)/ZrO]的平均晶粒尺寸为 171.04nm。SEM 图像描绘了由紧密堆积的纤维状纳米线或刷组成的一维形态结构。使用光学吸收分光光度计在 200-850nm 波长范围内的结果确定了薄膜的光学性质。使用 Tauc 方程计算的[P(An-MMa)/ZrO]的光学能隙分别为 2.352 和 2.253eV,而复合材料[P(An-MMa)/ZrO]的孤立分子的能隙为 2.415eV,这是通过 TD-DFT/DMol 确定的。在 TD-DFT 中,CASTEP 预测的光学特性与实验值吻合较好。所研究的具有大光学能隙的纳米纤维复合材料有利于一些储能应用。