IEEE Trans Biomed Eng. 2023 Feb;70(2):681-693. doi: 10.1109/TBME.2022.3200709. Epub 2023 Jan 19.
Dynamic MR imaging often requires long scan time, and acceleration of data acquisition is highly desirable in clinical applications.
We proposed a Low-rank Tensor subspace decomposition with Weighted Group Sparsity (LTWGS) algorithm for non-Cartesian dynamic MRI. The proposed algorithm introduces the weighted group sparse constraints together with the subspace decomposition technique into the framework of low-rank tensor and sparse decomposition to better utilize the sparsity in the data.
LTWGS increases the PSNR values by 1.97 dB, 2.03 dB, and 2.83 dB compared with PROST (patch-based reconstruction), SRTPCA (smooth robust tensor principal component analysis), and LRTES (low-rank tensor with "explicit subspace") in the dynamic abdominal imaging at an acceleration rate R = 25. LTWGS increases the PSNR values by 2.42 dB and 3.57 dB compared with PROST and LRTES in DCE liver imaging at R = 25. LTWGS increases the PSNR values by 1.40 dB and 1.96 dB compared with PROST and SRTPCA in cardiac cine imaging at R = 25.
Jointly using group sparsity and sparsity can obtain better results than that using group sparsity alone, and weighted regularization can achieve better results than that without weighted regularization. The proposed algorithm results in reduced reconstruction error and improved image structural similarity in comparison with several state-of-the-art methods at relatively high acceleration factors. The proposed algorithm has the potential in various dynamic MRI application scenarios.
动态磁共振成像通常需要较长的扫描时间,因此在临床应用中非常需要加速数据采集。
我们提出了一种用于非笛卡尔动态 MRI 的低秩张量子空间分解与加权分组稀疏(LTWGS)算法。所提出的算法将加权分组稀疏约束与子空间分解技术一起引入到低秩张量和稀疏分解框架中,以更好地利用数据中的稀疏性。
在加速率 R = 25 时,与基于补丁的重建(PROST)、平滑鲁棒张量主成分分析(SRTPCA)和具有“显式子空间”的低秩张量(LRTES)相比,LTWGS 在动态腹部成像中提高了 1.97dB、2.03dB 和 2.83dB 的 PSNR 值。在 R = 25 时,与 PROST 和 LRTES 相比,LTWGS 在 DCE 肝脏成像中提高了 2.42dB 和 3.57dB 的 PSNR 值。在 R = 25 时,与 PROST 和 SRTPCA 相比,LTWGS 在心脏电影成像中提高了 1.40dB 和 1.96dB 的 PSNR 值。
联合使用分组稀疏和稀疏性可以获得比单独使用分组稀疏更好的结果,加权正则化可以比没有加权正则化获得更好的结果。与几种最先进的方法相比,该算法在相对较高的加速因子下可以降低重建误差并提高图像结构相似度。该算法在各种动态 MRI 应用场景中具有潜力。