Suppr超能文献

使用状态方程和机器学习方法研究气态烃在离子液体中的溶解度。

Solubility of gaseous hydrocarbons in ionic liquids using equations of state and machine learning approaches.

机构信息

Department of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.

Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.

出版信息

Sci Rep. 2022 Aug 22;12(1):14276. doi: 10.1038/s41598-022-17983-6.

Abstract

Ionic liquids (ILs) have emerged as suitable options for gas storage applications over the past decade. Consequently, accurate prediction of gas solubility in ILs is crucial for their application in the industry. In this study, four intelligent techniques including Extreme Learning Machine (ELM), Deep Belief Network (DBN), Multivariate Adaptive Regression Splines (MARS), and Boosting-Support Vector Regression (Boost-SVR) have been proposed to estimate the solubility of some gaseous hydrocarbons in ILs based on two distinct methods. In the first method, the thermodynamic properties of hydrocarbons and ILs were used as input parameters, while in the second method, the chemical structure of ILs and hydrocarbons along with temperature and pressure were used. The results show that in the first method, the DBN model with root mean square error (RMSE) and coefficient of determination (R) values of 0.0054 and 0.9961, respectively, and in the second method, the DBN model with RMSE and R values of 0.0065 and 0.9943, respectively, have the most accurate predictions. To evaluate the performance of intelligent models, the obtained results were compared with previous studies and equations of the state including Peng-Robinson (PR), Soave-Redlich-Kwong (SRK), Redlich-Kwong (RK), and Zudkevitch-Joffe (ZJ). Findings show that intelligent models have high accuracy compared to equations of state. Finally, the investigation of the effect of different factors such as alkyl chain length, type of anion and cation, pressure, temperature, and type of hydrocarbon on the solubility of gaseous hydrocarbons in ILs shows that pressure and temperature have a direct and inverse effect on increasing the solubility of gaseous hydrocarbons in ILs, respectively. Also, the evaluation of the effect of hydrocarbon type shows that increasing the molecular weight of hydrocarbons increases the solubility of gaseous hydrocarbons in ILs.

摘要

在过去的十年中,离子液体 (ILs) 已成为气体存储应用的合适选择。因此,准确预测 ILs 中的气体溶解度对于它们在工业中的应用至关重要。在这项研究中,提出了四种智能技术,包括极限学习机 (ELM)、深度置信网络 (DBN)、多元自适应回归样条 (MARS) 和 Boosting-支持向量回归 (Boost-SVR),以根据两种不同的方法估算一些气态烃在 ILs 中的溶解度。在第一种方法中,使用烃类和 ILs 的热力学性质作为输入参数,而在第二种方法中,使用 ILs 和烃类的化学结构以及温度和压力作为输入参数。结果表明,在第一种方法中,DBN 模型的均方根误差 (RMSE) 和确定系数 (R) 值分别为 0.0054 和 0.9961,而在第二种方法中,DBN 模型的 RMSE 和 R 值分别为 0.0065 和 0.9943,具有最准确的预测。为了评估智能模型的性能,将获得的结果与先前的研究和状态方程(包括 Peng-Robinson (PR)、Soave-Redlich-Kwong (SRK)、Redlich-Kwong (RK) 和 Zudkevitch-Joffe (ZJ))进行了比较。结果表明,与状态方程相比,智能模型具有更高的准确性。最后,考察了不同因素(如烷基链长度、阴离子和阳离子类型、压力、温度和烃类类型)对气态烃在 ILs 中溶解度的影响,结果表明压力和温度分别对增加气态烃在 ILs 中的溶解度有直接和间接的影响。此外,对烃类类型影响的评估表明,烃类分子量的增加会增加气态烃在 ILs 中的溶解度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f84/9395420/61599588e79b/41598_2022_17983_Fig1_HTML.jpg

相似文献

10
Prediction of ammonia absorption in ionic liquids based on extreme learning machine modelling and a novel molecular descriptor S.
Environ Res. 2020 Oct;189:109951. doi: 10.1016/j.envres.2020.109951. Epub 2020 Jul 17.

引用本文的文献

本文引用的文献

1
A review on machine learning algorithms for the ionic liquid chemical space.
Chem Sci. 2021 May 6;12(20):6820-6843. doi: 10.1039/d1sc01000j.
4
Solubility of gases in a common ionic liquid from molecular dynamics based free energy calculations.
J Phys Chem B. 2014 Mar 13;118(10):2719-25. doi: 10.1021/jp500137u. Epub 2014 Feb 26.
6
Extreme learning machine for regression and multiclass classification.
IEEE Trans Syst Man Cybern B Cybern. 2012 Apr;42(2):513-29. doi: 10.1109/TSMCB.2011.2168604. Epub 2011 Oct 6.
8
Anion effects on gas solubility in ionic liquids.
J Phys Chem B. 2005 Apr 7;109(13):6366-74. doi: 10.1021/jp046404l.
9
A fast learning algorithm for deep belief nets.
Neural Comput. 2006 Jul;18(7):1527-54. doi: 10.1162/neco.2006.18.7.1527.
10
Boosting support vector regression in QSAR studies of bioactivities of chemical compounds.
Eur J Pharm Sci. 2006 Jul;28(4):344-53. doi: 10.1016/j.ejps.2006.04.002. Epub 2006 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验