, Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China.
, Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China.
Exp Cell Res. 2022 Oct 15;419(2):113320. doi: 10.1016/j.yexcr.2022.113320. Epub 2022 Aug 23.
The diabetic cognitive impairments are associated with high-glucose (HG)-induced mitochondrial dysfunctions in the brain. Our previous studies demonstrated that long non-coding RNA (lncRNA)-MEG3 alleviates diabetic cognitive impairments. However, the underlying mechanism has still remained elusive. Therefore, this study was designed to investigate whether the mitochondrial translocation of HSP90A and its phosphorylation are involved in lncRNA-MEG3-mediated neuroprotective effects of mitochondrial functions in HG-treated primary hippocampal neurons and diabetic rats. The primary hippocampal neurons were exposed to 75 mM glucose for 72 h to establish a HG model in vitro. Firstly, the RNA pull-down and RNA immunoprecipitation (RIP) assays clearly indicated that lncRNA-MEG3-associated mitochondrial proteins were Annexin A2, HSP90A, and Plectin. Although HG promoted the mitochondrial translocation of HSP90A and Annexin A2, lncRNA-MEG3 over-expression only enhanced the mitochondrial translocation of HSP90A, rather than Annexin A2, in the primary hippocampal neurons treated with or without HG. Meanwhile, Plectin mediated the mitochondrial localization of lncRNA-MEG3 and HSP90A. Furthermore, HSP90A threonine phosphorylation participated in regulating mitochondrial translocation of HSP90A, and lncRNA-MEG3 also enhanced mitochondrial translocation of HSP90A through suppressing HSP90A threonine phosphorylation. Finally, the anti-apoptotic role of mitochondrial translocation of HSP90A was found to be associated with inhibiting death receptor 5 (DR5) in HG-treated primary hippocampal neurons and diabetic rats. Taken together, lncRNA-MEG3 could improve mitochondrial functions in HG-exposed primary hippocampal neurons, and the underlying mechanisms were involved in enhanced mitochondrial translocation of HSP90A via suppressing HSP90A threonine phosphorylation, which may reveal a potential therapeutic target for diabetic cognitive impairments.
糖尿病认知障碍与大脑中高糖(HG)诱导的线粒体功能障碍有关。我们之前的研究表明,长链非编码 RNA(lncRNA)-MEG3 可减轻糖尿病认知障碍。然而,其潜在机制仍不清楚。因此,本研究旨在探讨线粒体热休克蛋白 90A(HSP90A)的易位及其磷酸化是否参与 lncRNA-MEG3 介导的 HG 处理的原代海马神经元和糖尿病大鼠中线粒体功能的神经保护作用。原代海马神经元暴露于 75 mM 葡萄糖中 72 小时,在体外建立 HG 模型。首先,RNA 下拉和 RNA 免疫沉淀(RIP)实验清楚地表明,lncRNA-MEG3 相关的线粒体蛋白为膜联蛋白 A2、HSP90A 和 Plectin。尽管 HG 促进了 HSP90A 的线粒体易位,但 lncRNA-MEG3 的过表达仅增强了 HG 处理或未处理的原代海马神经元中线粒体 HSP90A 的易位,而不是膜联蛋白 A2。同时,Plectin 介导了 lncRNA-MEG3 和 HSP90A 的线粒体定位。此外,HSP90A 苏氨酸磷酸化参与调节 HSP90A 的线粒体易位,lncRNA-MEG3 还通过抑制 HSP90A 苏氨酸磷酸化增强 HSP90A 的线粒体易位。最后,发现 HSP90A 线粒体易位的抗凋亡作用与抑制 HG 处理的原代海马神经元和糖尿病大鼠中的死亡受体 5(DR5)有关。总之,lncRNA-MEG3 可以改善 HG 暴露的原代海马神经元中的线粒体功能,其潜在机制涉及通过抑制 HSP90A 苏氨酸磷酸化增强 HSP90A 的线粒体易位,这可能为糖尿病认知障碍提供潜在的治疗靶点。