Suppr超能文献

二维切向射频激发用于降低场强成像中的失谐稳健性和脂肪抑制。

Sheared two-dimensional radiofrequency excitation for off-resonance robustness and fat suppression in reduced field-of-view imaging.

机构信息

Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey.

National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey.

出版信息

Magn Reson Med. 2022 Dec;88(6):2504-2519. doi: 10.1002/mrm.29416. Epub 2022 Aug 24.

Abstract

PURPOSE

Two-dimensional (2D) echo-planar radiofrequency (RF) pulses are widely used for reduced field-of-view (FOV) imaging in applications such as diffusion-weighted imaging. However, long pulse durations render the 2D RF pulses sensitive to off-resonance effects, causing local signal losses in reduced-FOV images. This work aims to achieve off-resonance robustness for 2D RF pulses via a sheared trajectory design.

THEORY AND METHODS

A sheared 2D RF pulse design is proposed to reduce pulse durations while covering identical excitation k-space extent as a standard 2D RF pulse. For a given shear angle, the number of sheared trajectory lines is minimized to obtain the shortest pulse duration, such that the excitation replicas are repositioned outside the slice stack to guarantee unlimited slice coverage. A target fat/water signal ratio of 5% is chosen to achieve robust fat suppression.

RESULTS

Simulations, imaging experiments on a custom head and neck phantom, and in vivo imaging experiments in the spinal cord at 3 T demonstrate that the sheared 2D RF design provides significant improvement in image quality while preserving profile sharpnesses. In regions with high off-resonance effects, the sheared 2D RF pulse improves the signal by more than 50% when compared to the standard 2D RF pulse.

CONCLUSION

The proposed sheared 2D RF design successfully reduces pulse durations, exhibiting significantly improved through-plane off-resonance robustness, while providing unlimited slice coverage and high fidelity fat suppression. This method will be especially beneficial in regions suffering from a variety of off-resonance effects, such as spinal cord and breast.

摘要

目的

二维(2D)回波平面射频(RF)脉冲广泛应用于扩散加权成像等应用中的小视野(FOV)成像。然而,较长的脉冲持续时间使得 2D RF 脉冲对离频效应敏感,导致小 FOV 图像中的局部信号丢失。本工作旨在通过剪切轨迹设计实现 2D RF 脉冲的离频鲁棒性。

理论和方法

提出了一种剪切 2D RF 脉冲设计,以在覆盖与标准 2D RF 脉冲相同的激励 k 空间范围的同时减少脉冲持续时间。对于给定的剪切角,最小化剪切轨迹线的数量以获得最短的脉冲持续时间,使得激励副本被重新定位在切片堆栈之外,以保证无限的切片覆盖。选择目标脂肪/水信号比为 5% 以实现稳健的脂肪抑制。

结果

模拟、在定制的头颈部体模上的成像实验以及在 3T 下的脊髓体内成像实验表明,剪切 2D RF 设计在保持轮廓锐度的同时,显著提高了图像质量。在离频效应较高的区域,与标准 2D RF 脉冲相比,剪切 2D RF 脉冲可提高信号超过 50%。

结论

所提出的剪切 2D RF 设计成功地减少了脉冲持续时间,表现出显著改善的平面离频鲁棒性,同时提供了无限的切片覆盖和高保真脂肪抑制。这种方法将特别有益于受到各种离频效应影响的区域,如脊髓和乳房。

相似文献

2
Hadamard slice encoding for reduced-FOV diffusion-weighted imaging.
Magn Reson Med. 2014 Nov;72(5):1277-90. doi: 10.1002/mrm.25044. Epub 2013 Nov 21.
3
Reduced field-of-view DWI with robust fat suppression and unrestricted slice coverage using tilted 2D RF excitation.
Magn Reson Med. 2016 Dec;76(6):1668-1676. doi: 10.1002/mrm.26405. Epub 2016 Sep 21.
4
2D RF pulse design for optimized reduced field-of-view imaging at 1.5T and 3T.
Magn Reson Imaging. 2022 Jan;85:210-216. doi: 10.1016/j.mri.2021.10.021. Epub 2021 Oct 22.
7
In-plane simultaneous multisegment imaging using a 2D RF pulse.
Magn Reson Med. 2022 Jan;87(1):263-271. doi: 10.1002/mrm.28956. Epub 2021 Aug 4.
8
DWI of the spinal cord with reduced FOV single-shot EPI.
Magn Reson Med. 2008 Aug;60(2):468-73. doi: 10.1002/mrm.21640.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验