Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
Program in Neuroscience, Indiana University, Bloomington, IN, USA.
Addict Biol. 2022 Sep;27(5):e13220. doi: 10.1111/adb.13220.
Glutamate signalling through the N-methyl-d-aspartate receptor (NMDAR) activates the enzyme neuronal nitric oxide synthase (nNOS) to produce the signalling molecule nitric oxide (NO). We hypothesized that disruption of the protein-protein interaction between nNOS and the scaffolding protein postsynaptic density 95 kDa (PSD95) would block NMDAR-dependent NO signalling and represent a viable therapeutic route to decrease opioid reward and relapse-like behaviour without the unwanted side effects of NMDAR antagonists. We used a conditioned place preference (CPP) paradigm to evaluate the impact of two small-molecule PSD95-nNOS inhibitors, IC87201 and ZL006, on the rewarding effects of morphine. Both IC87201 and ZL006 blocked morphine-induced CPP at doses that lacked intrinsic rewarding or aversive properties. Furthermore, in vivo fast-scan cyclic voltammetry (FSCV) was used to ascertain the impact of ZL006 on morphine-induced increases in dopamine (DA) efflux in the nucleus accumbens shell (NAc shell) evoked by electrical stimulation of the medial forebrain bundle (MFB). ZL006 attenuated morphine-induced increases in DA efflux at a dose that did not have intrinsic effects on DA transmission. We also employed multiple intravenous drug self-administration approaches to examine the impact of ZL006 on the reinforcing effects of morphine. Interestingly, ZL006 did not alter acquisition or maintenance of morphine self-administration, but reduced lever pressing in a morphine relapse test after forced abstinence. Our results provide behavioural and neurochemical support for the hypothesis that inhibition of PSD95-nNOS protein-protein interactions decreases morphine reward and relapse-like behaviour, highlighting a previously unreported application for these novel therapeutics in the treatment of opioid addiction.
谷氨酸通过 N-甲基-D-天冬氨酸受体 (NMDAR) 信号传导激活酶神经元型一氧化氮合酶 (nNOS) 产生信号分子一氧化氮 (NO)。我们假设,破坏 nNOS 和支架蛋白突触后密度 95 kDa (PSD95) 之间的蛋白质-蛋白质相互作用,将阻断 NMDAR 依赖性 NO 信号传导,并代表一种可行的治疗途径,以减少阿片类药物的奖赏和类似复发的行为,而没有 NMDAR 拮抗剂的不良副作用。我们使用条件性位置偏好 (CPP) 范式来评估两种小分子 PSD95-nNOS 抑制剂 IC87201 和 ZL006 对吗啡奖赏作用的影响。IC87201 和 ZL006 均以缺乏内在奖赏或厌恶特性的剂量阻断吗啡诱导的 CPP。此外,体内快速扫描循环伏安法 (FSCV) 用于确定 ZL006 对电刺激中脑边缘束 (MFB) 诱导的伏隔核壳 (NAc 壳) 中吗啡诱导的多巴胺 (DA) 外排增加的影响。ZL006 以不具有内在 DA 传递作用的剂量减弱了吗啡诱导的 DA 外排增加。我们还采用了多种静脉药物自我给药方法来研究 ZL006 对吗啡强化作用的影响。有趣的是,ZL006 没有改变吗啡自我给药的获得或维持,但在强制戒断后的吗啡复发测试中减少了杠杆按压。我们的结果为抑制 PSD95-nNOS 蛋白质-蛋白质相互作用降低吗啡奖赏和类似复发的行为的假设提供了行为和神经化学支持,突出了这些新型治疗药物在治疗阿片成瘾方面的以前未报道的应用。