Suppr超能文献

全球风暴灾害易灾区评估。

Global assessment of storm disaster-prone areas.

机构信息

Met European Research Observatory-International Affiliates Program of the University Corporation for Atmospheric Research, Benevento, Italy.

Department of Science, Roma Tre University, Rome, Italy.

出版信息

PLoS One. 2022 Aug 24;17(8):e0272161. doi: 10.1371/journal.pone.0272161. eCollection 2022.

Abstract

BACKGROUND

Advances in climate change research contribute to improved forecasts of hydrological extremes with potentially severe impacts on human societies and natural landscapes. Rainfall erosivity density (RED), i.e. rainfall erosivity (MJ mm hm-2 h-1 yr-1) per rainfall unit (mm), is a measure of rainstorm aggressiveness and a proxy indicator of damaging hydrological events.

METHODS AND FINDINGS

Here, using downscaled RED data from 3,625 raingauges worldwide and log-normal ordinary kriging with probability mapping, we identify damaging hydrological hazard-prone areas that exceed warning and alert thresholds (1.5 and 3.0 MJ hm-2 h-1, respectively). Applying exceedance probabilities in a geographical information system shows that, under current climate conditions, hazard-prone areas exceeding a 50% probability cover ~31% and ~19% of the world's land at warning and alert states, respectively.

CONCLUSION

RED is identified as a key driver behind the spatial growth of environmental disruption worldwide (with tropical Latin America, South Africa, India and the Indian Archipelago most affected).

摘要

背景

气候变化研究的进展有助于提高对水文极值的预测,这些极值可能对人类社会和自然景观造成严重影响。降雨侵蚀性密度(RED),即每降雨单位(mm)的降雨侵蚀性(MJ mm hm-2 h-1 yr-1),是衡量暴雨强度的一种度量,也是破坏性水文事件的代理指标。

方法和发现

在这里,我们使用来自全球 3625 个雨量计的降尺度 RED 数据和带有概率映射的对数正态普通克里金法,确定了超过预警和警报阈值(分别为 1.5 和 3.0 MJ hm-2 h-1)的易受破坏性水文灾害影响的地区。在地理信息系统中应用超越概率表明,在当前气候条件下,易受灾害影响的地区超过 50%的概率分别覆盖了约 31%和 19%的世界土地处于预警和警报状态。

结论

RED 被确定为全球环境破坏空间增长的关键驱动因素(受影响最严重的地区包括热带拉丁美洲、南非、印度和印度尼西亚群岛)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验