Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.
Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany.
Cardiovasc Res. 2023 May 2;119(3):759-771. doi: 10.1093/cvr/cvac136.
Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique knock-in (KI) rat model for the FilaminA-P637Q (FlnA-P637Q) mutation associated-MVD.
Wild-type (WT) and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signalling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm vs. 1.8 ± 0.1, P = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% vs. WT, P = 0.02). Histological analyses revealed a myxomatous remodelling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signalling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of transforming growth factor-β and inflammation in the disease.
The KI FlnA-P637Q rat model mimics human myxomatous MVD, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signalling pathways leading to myxomatous MVD. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.
导致二尖瓣脱垂的退行性二尖瓣瓣环扩张(MVD)是最常见的二尖瓣疾病形式,目前尚无可用的药物治疗方法。对导致 MVD 的病理生理机制的有限理解限制了我们识别治疗靶点的能力。本研究旨在通过对新型和独特的肌球蛋白 A 原肌球蛋白结合蛋白 A 突变相关 MVD 敲入(KI)大鼠模型的多模态成像和转录组分析,揭示 MVD 涉及的主要病理生理途径。
根据多普勒超声心动图、3D 微计算机断层扫描(microCT)和标准组织学,在 3 周龄至 3 至 6 月龄之间对野生型(WT)和 KI 大鼠进行形态学、功能和组织学评估。分别对 3 周龄的 WT 和 KI 二尖瓣和瓣叶细胞进行 RNA 测序和转座酶可及染色质分析(ATAC-seq),以突出与 MVD 相关的主要信号通路。超声心动图研究证实,与 WT 相比,3 周龄时 KI 动物的 MV 伸长(2.0 ± 0.1mm 比 1.8 ± 0.1mm,P = 0.001)以及 MV 增厚和脱垂。microCT 定量的 3D MV 容积在 KI 动物中显著增加(+58%比 WT,P = 0.02)。组织学分析显示 KI MV 呈现粘液样重塑,特征为蛋白聚糖积累。成年 KI 大鼠观察到持续的表型。基于 RNA 测序分析,确定了与细胞外基质稳态、分子应激反应、上皮细胞迁移、内皮到间充质转化、趋化和免疫细胞迁移相关的信号通路。ATAC-seq 分析表明转化生长因子-β和炎症在疾病中的关键作用。
KI FlnA-P637Q 大鼠模型模拟了人类粘液样 MVD,为阐明与该疾病相关的病理生理机制提供了独特的机会。细胞外基质组织、上皮细胞迁移、对机械应激的反应以及免疫细胞的核心贡献被强调为导致粘液样 MVD 的主要信号通路。我们的研究结果为阐明分子机制以及不同细胞群体在这种情况下的特定作用铺平了道路。