Wierzbicka Ewa, Schultz Thorsten, Syrek Karolina, Sulka Grzegorz Dariusz, Koch Norbert, Pinna Nicola
Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
Department of Functional Materials and Hydrogen Technology, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Street, 00908 Warsaw, Poland.
Mater Horiz. 2022 Oct 31;9(11):2797-2808. doi: 10.1039/d2mh00718e.
We introduce for the first time a core-shell structure composed of nanostructured self-standing titania nanotubes (TNT, light absorber) filled with Au nanowire (AuNW) array (electrons collector) applied to the photoelectrocatalytic water splitting. Its activity is four times higher than that of reference TNT-Ti obtained with the same anodizing conditions. The composite photoanode brings a distinct photocurrent generation (8 mA cm at 1.65 V RHE), and a high incident photon to current efficiency of 35% obtained under UV light illumination. Moreover, the full system concept of selected constitutional materials, based on Au noble metal and the very stable semiconductor TiO, ensures a stable performance over a long-time range with no photocurrent loss during 100 on-off cycles of light illumination, after 12 h constant illumination and after one-month storage in air. We provide experimental evidence by photoelectron spectroscopy measurements, confirming that the electronic structure of TNT-AuNW is rectifying for electrons and ohmic for holes, while the electrochemical characterization confirms that the specific architecture of the photoanode supports electron separation due to the presence of a Schottky type contact and fast electron transport through the Au nanowires. Although the composite material shows an unchanged electrochemical band gap, typical for plain TiO, we find this material to be an innovative platform for efficient photoelectrochemical water splitting under UV light illumination, with significant potential for further modifications, for example extension into the visible light regime.
我们首次介绍了一种核壳结构,它由填充有金纳米线(AuNW)阵列(电子收集器)的纳米结构自支撑二氧化钛纳米管(TNT,光吸收体)组成,应用于光电催化水分解。其活性比在相同阳极氧化条件下获得的参考TNT-Ti高四倍。复合光阳极产生明显的光电流(在1.65 V RHE下为8 mA cm),在紫外光照射下获得的入射光子到电流效率高达35%。此外,基于金贵金属和非常稳定的半导体TiO的选定构成材料的全系统概念,确保了在长时间范围内的稳定性能,在12小时持续光照后以及在空气中储存一个月后,在100次光开关循环期间无光电流损失。我们通过光电子能谱测量提供了实验证据,证实TNT-AuNW的电子结构对电子是整流的,对空穴是欧姆的,而电化学表征证实光阳极的特定结构由于存在肖特基型接触和通过金纳米线的快速电子传输而支持电子分离。尽管该复合材料显示出与普通TiO典型的不变的电化学带隙,但我们发现这种材料是在紫外光照射下高效光电化学水分解的创新平台,具有进一步改性的巨大潜力,例如扩展到可见光区域。