Suppr超能文献

基于 3T MRI 的机器学习和纹理分析预测局部进展期直肠癌新辅助放化疗反应的性能。

Performance of Machine Learning and Texture Analysis for Predicting Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer with 3T MRI.

机构信息

Department of Radiological Sciences, Oncology and Pathology, "Sapienza" University of Rome-I.C.O.T. Hospital, Via Franco Faggiana, 1668, 04100 Latina, Italy.

Department of Surgical and Medical Sciences and Translational Medicine, "Sapienza" University of Rome-Diagnostic Imaging Unit, Sant'Andrea University Hospital, Via di Grottarossa 1035, 00189 Rome, Italy.

出版信息

Tomography. 2022 Aug 19;8(4):2059-2072. doi: 10.3390/tomography8040173.

Abstract

Background: To evaluate the diagnostic performance of a Machine Learning (ML) algorithm based on Texture Analysis (TA) parameters in the prediction of Pathological Complete Response (pCR) to Neoadjuvant Chemoradiotherapy (nChRT) in Locally Advanced Rectal Cancer (LARC) patients. Methods: LARC patients were prospectively enrolled to undergo pre- and post-nChRT 3T MRI for initial loco-regional staging. TA was performed on axial T2-Weighted Images (T2-WI) to extract specific parameters, including skewness, kurtosis, entropy, and mean of positive pixels. For the assessment of TA parameter diagnostic performance, all patients underwent complete surgical resection, which served as a reference standard. ROC curve analysis was carried out to determine the discriminatory accuracy of each quantitative TA parameter to predict pCR. A ML-based decisional tree was implemented combining all TA parameters in order to improve diagnostic accuracy. Results: Forty patients were considered for final study population. Entropy, kurtosis and MPP showed statistically significant differences before and after nChRT in patients with pCR; in particular, when patients with Pathological Partial Response (pPR) and/or Pathological Non-Response (pNR) were considered, entropy and skewness showed significant differences before and after nChRT (all p < 0.05). In terms of absolute value changes, pre- and post-nChRT entropy, and kurtosis showed significant differences (0.31 ± 0.35, in pCR, −0.02 ± 1.28 in pPR/pNR, (p = 0.04); 1.87 ± 2.19, in pCR, −0.06 ± 3.78 in pPR/pNR (p = 0.0005); 107.91 ± 274.40, in pCR, −28.33 ± 202.91 in pPR/pNR, (p = 0.004), respectively). According to ROC curve analysis, pre-treatment kurtosis with an optimal cut-off value of ≤3.29 was defined as the best discriminative parameter, resulting in a sensitivity and specificity in predicting pCR of 81.5% and 61.5%, respectively. Conclusions: TA parameters extracted from T2-WI MRI images could play a key role as imaging biomarkers in the prediction of response to nChRT in LARC patients. ML algorithms can be used to efficiently combine all TA parameters in order to improve diagnostic accuracy.

摘要

背景

评估基于机器学习(ML)算法的纹理分析(TA)参数在预测局部晚期直肠癌(LARC)患者新辅助放化疗(nChRT)后病理完全缓解(pCR)中的诊断性能。

方法

前瞻性纳入 LARC 患者,进行新辅助 nChRT 前和后的 3T MRI 用于初始局部区域分期。在轴位 T2 加权图像(T2-WI)上进行 TA,以提取特定参数,包括偏度、峰度、熵和阳性像素均值。为了评估 TA 参数的诊断性能,所有患者均接受完全手术切除作为参考标准。采用 ROC 曲线分析确定每个定量 TA 参数预测 pCR 的鉴别准确性。实施基于 ML 的决策树,将所有 TA 参数结合起来以提高诊断准确性。

结果

40 名患者被纳入最终的研究人群。在 pCR 患者中,熵、峰度和 MPP 在 nChRT 前后有统计学显著差异;特别是当考虑有病理部分缓解(pPR)和/或病理无反应(pNR)的患者时,熵和偏度在 nChRT 前后有统计学显著差异(均 p<0.05)。在绝对值变化方面,nChRT 前后的熵和峰度有显著差异(pCR 为 0.31±0.35,pPR/pNR 为-0.02±1.28,p=0.04;pCR 为 1.87±2.19,pPR/pNR 为-0.06±3.78,p=0.0005;pCR 为 107.91±274.40,pPR/pNR 为-28.33±202.91,p=0.004)。根据 ROC 曲线分析,以治疗前峰度值≤3.29 作为最佳截断值,其预测 pCR 的敏感性和特异性分别为 81.5%和 61.5%。

结论

从 T2-WI MRI 图像中提取的 TA 参数可以作为预测 LARC 患者对 nChRT 反应的影像学生物标志物发挥关键作用。ML 算法可用于有效结合所有 TA 参数,以提高诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2937/9416446/a152ae494a57/tomography-08-00173-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验