Suppr超能文献

细胞外硬度通过细胞自主和微管依赖性机制诱导成年心肌细胞的收缩功能障碍。

Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms.

机构信息

Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Smillow TRC 11-101, Philadelphia, PA, 19104, USA.

Department of Molecular Physiology and Biophysics, University of Vermont's Larner College of Medicine, Burlington, VT, USA.

出版信息

Basic Res Cardiol. 2022 Aug 25;117(1):41. doi: 10.1007/s00395-022-00952-5.

Abstract

The mechanical environment of the myocardium has a potent effect on cardiomyocyte form and function, yet an understanding of the cardiomyocyte responses to extracellular stiffening remains incomplete. We therefore employed a cell culture substrate with tunable stiffness to define the cardiomyocyte responses to clinically relevant stiffness increments in the absence of cell-cell interactions. When cultured on substrates magnetically actuated to mimic the stiffness of diseased myocardium, isolated rat adult cardiomyocytes exhibited a time-dependent reduction of sarcomere shortening, characterized by slowed contraction and relaxation velocity, and alterations of the calcium transient. Cardiomyocytes cultured on stiff substrates developed increases in viscoelasticity and microtubule detyrosination in association with early increases in the α-tubulin detyrosinating enzyme vasohibin-2 (Vash2). We found that knockdown of Vash2 was sufficient to preserve contractile performance as well as calcium transient properties in the presence of extracellular substrate stiffening. Orthogonal prevention of detyrosination by overexpression of tubulin tyrosine ligase (TTL) was also able to preserve contractility and calcium homeostasis. These data demonstrate that a pathologic increment of extracellular stiffness induces early, cell-autonomous remodeling of adult cardiomyocytes that is dependent on detyrosination of α-tubulin.

摘要

心肌的力学环境对心肌细胞的形态和功能有很强的影响,但人们对心肌细胞对外界基质硬度增加的反应仍了解不足。因此,我们采用了一种可调节硬度的细胞培养基质,在不存在细胞间相互作用的情况下,定义了心肌细胞对临床相关硬度增加的反应。当在模拟病变心肌硬度的磁场激活基质上培养时,分离的成年大鼠心肌细胞表现出时程依赖性的肌节缩短减少,其特征为收缩和舒张速度减慢,以及钙瞬变的改变。在硬基质上培养的心肌细胞表现出粘弹性增加和微管去酪氨酸化,同时早期α-微管去酪氨酸酶血管抑素-2(Vash2)增加。我们发现,在细胞外基质硬度增加的情况下,敲低 Vash2 足以维持收缩性能和钙瞬变特性。通过过表达微管酪氨酸连接酶(TTL)来阻止去酪氨酸化也能够维持收缩性和钙稳态。这些数据表明,细胞外基质硬度的病理性增加会诱导成年心肌细胞的早期、自主重塑,这依赖于α-微管的去酪氨酸化。

相似文献

4
Chronic Activation of Tubulin Tyrosination Improves Heart Function.微管酪氨酸化的慢性激活可改善心脏功能。
Circ Res. 2024 Oct 11;135(9):910-932. doi: 10.1161/CIRCRESAHA.124.324387. Epub 2024 Sep 16.

引用本文的文献

7
Functional Impact of Alternative Metabolic Substrates in Failing Human Cardiomyocytes.替代代谢底物对衰竭的人类心肌细胞的功能影响
JACC Basic Transl Sci. 2023 Sep 20;9(1):1-15. doi: 10.1016/j.jacbts.2023.07.009. eCollection 2024 Jan.
10
Adult human cardiomyocyte mechanics in osteogenesis imperfecta.成骨不全症患者的成年人心肌细胞力学特性。
Am J Physiol Heart Circ Physiol. 2023 Oct 1;325(4):H814-H821. doi: 10.1152/ajpheart.00391.2023. Epub 2023 Aug 11.

本文引用的文献

3
The Physiology and Pathophysiology of T-Tubules in the Heart.心脏中横管的生理学与病理生理学
Front Physiol. 2021 Sep 9;12:718404. doi: 10.3389/fphys.2021.718404. eCollection 2021.
7
Stiffness Sensing by Cells.细胞的刚性感知。
Physiol Rev. 2020 Apr 1;100(2):695-724. doi: 10.1152/physrev.00013.2019. Epub 2019 Nov 21.
8
Cardiac microtubules in health and heart disease.心脏微管在健康和心脏疾病中的作用。
Exp Biol Med (Maywood). 2019 Nov;244(15):1255-1272. doi: 10.1177/1535370219868960. Epub 2019 Aug 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验