Department of Mathematics, Bar Ilan University, Ramat Gan Israel.
Center for Blood and Marrow Transplant Research, Minneapolis, Minnesota; National Marrow Donor Program/Be The Match, Minneapolis, Minnesota.
Transplant Cell Ther. 2022 Dec;28(12):843.e1-843.e6. doi: 10.1016/j.jtct.2022.08.022. Epub 2022 Aug 28.
A large number of association studies have related donor characteristics to survival after bone marrow transplantation, for leukemia in general and specifically for acute myeloid leukemia (AML) patients. However, population-based differences often do not hold at the single transplant level. We test whether transplantation outcomes can be predicted at the single-patient level and whether such predictions can be used to better choose donors. The analysis was performed on a mixture of different diseases or with AML only, and with either patient and donor information or donor information only. We analyzed 3671 8-of-8 HLA-matched AML donor-recipient pairs and tested whether the outcome, including 1-year total and event-free survival, can be predicted from patient and donor-related factors. We used multiple machine learning and survival analysis methods. The best method is a fully connected neural network. Multiple outcomes can be predicted, with area under the specificity-sensitivity curve (AUC) values between 0.54 and 0.67 for the different outcomes. The patient age has a strong impact on prediction. However, for a given patient, when only donor or transplant information is used, limited prediction accuracy of 0.54 to 0.56 AUC for event-free survival and survival is obtained. Graft-versus-host disease and rejection after 1 year have slightly higher AUC values of around 0.59, whereas the relapse prediction accuracy was random. All donors' characteristics have a limited influence on the quality of hematopoietic stem cell transplantation for fully matched donors. Many factors with a population effect on survival have a very limited effect when combined with all other factors in a single-donor predictive model.
大量的关联研究将供者特征与骨髓移植后的生存相关联,一般是白血病,特别是急性髓细胞白血病(AML)患者。然而,基于人群的差异在单个移植水平上往往并不存在。我们检验是否可以在单个患者水平上预测移植结果,以及这些预测是否可以用于更好地选择供者。该分析在不同疾病的混合或仅 AML 中进行,并且使用患者和供者信息或仅供者信息。我们分析了 3671 例 8 对 8 HLA 匹配的 AML 供受者对,并检验了包括 1 年总生存率和无事件生存率在内的结果是否可以从患者和供者相关因素中预测。我们使用了多种机器学习和生存分析方法。最佳方法是全连接神经网络。可以预测多个结果,不同结果的特异性-敏感性曲线下面积(AUC)值在 0.54 到 0.67 之间。患者年龄对预测有很大影响。然而,对于给定的患者,当仅使用供者或移植信息时,无事件生存率和生存率的预测准确性有限,AUC 值在 0.54 到 0.56 之间。1 年后移植物抗宿主病和排斥反应的 AUC 值略高,约为 0.59,而复发预测准确性是随机的。所有供者特征对完全匹配供者的造血干细胞移植质量的影响有限。许多对生存有群体影响的因素在单个供者预测模型中与所有其他因素结合时,影响非常有限。