Suppr超能文献

在介孔二氧化硅上形成超致密氢单层。

Formation of a super-dense hydrogen monolayer on mesoporous silica.

作者信息

Balderas-Xicohténcatl Rafael, Lin Hung-Hsuan, Lurz Christian, Daemen Luke, Cheng Yongqiang, Cychosz Struckhoff Katie, Guillet-Nicolas Remy, Schütz Gisela, Heine Thomas, Ramirez-Cuesta Anibal J, Thommes Matthias, Hirscher Michael

机构信息

Max Planck Institute for Intelligent Systems, Stuttgart, Germany.

Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

Nat Chem. 2022 Nov;14(11):1319-1324. doi: 10.1038/s41557-022-01019-7. Epub 2022 Aug 29.

Abstract

Adsorption on various adsorbents of hydrogen and helium at temperatures close to their boiling points shows, in some cases, unusually high monolayer capacities. The microscopic nature of these adsorbate phases at low temperatures has, however, remained challenging to characterize. Here, using high-resolution cryo-adsorption studies together with characterization by inelastic neutron scattering vibration spectroscopy, we show that, near its boiling point (~20 K), H adsorbed on a well-ordered mesoporous silica forms a two-dimensional monolayer with a density more than twice that of bulk-solid H, rather than a bilayer. Theoretical studies, based on thorough first-principles calculations, rationalize the formation of such a super-dense phase. The strong compression of the hydrogen surface layer is due to the excess of surface-hydrogen attraction over intermolecular hydrogen repulsion. Use of this super-dense hydrogen monolayer on an adsorbent might be a feasible option for the storage of hydrogen near its boiling point, compared with adsorption at 77 K.

摘要

在接近氢气和氦气沸点的温度下,它们在各种吸附剂上的吸附情况表明,在某些情况下,单层容量异常高。然而,这些低温吸附相的微观性质一直难以表征。在这里,我们通过高分辨率低温吸附研究以及非弹性中子散射振动光谱表征表明,在其沸点(约20K)附近,吸附在有序介孔二氧化硅上的H形成了二维单层,其密度是体相固态H的两倍多,而不是双层。基于深入的第一性原理计算的理论研究解释了这种超密相的形成。氢表面层的强烈压缩是由于表面氢吸引力超过分子间氢排斥力。与在77K下的吸附相比,在吸附剂上使用这种超密氢单层可能是在接近其沸点时储存氢的一种可行选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87c3/9630099/0a7c8904ae23/41557_2022_1019_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验