School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia.
Adv Healthc Mater. 2022 Nov;11(21):e2201360. doi: 10.1002/adhm.202201360. Epub 2022 Sep 9.
Biomedical devices are prone to blood clot formation (thrombosis), and liquid-infused surfaces (LIS) are effective in reducing the thrombotic response. However, the mechanisms that underpin this performance, and in particular the role of the lubricant, are not well understood. In this work, it is investigated whether the mechanism of LIS action is related to i) inhibition of factor XII (FXII) activation and the contact pathway; ii) reduced fibrin density of clots formed on surfaces; iii) increased mobility of proteins or cells on the surface due to the interfacial flow of the lubricant. The chosen LIS is covalently tethered, nanostructured layers of perfluorocarbons, infused with thin films of medical-grade perfluorodecalin (tethered-liquid perfluorocarbon), prepared with chemical vapor deposition previously optimized to retain lubricant under flow. Results show that in the absence of external flow, interfacial mobility is inherently higher at the liquid-blood interface, making it a key contributor to the low thrombogenicity of LIS, as FXII activity and fibrin density are equivalent at the interface. The findings of this study advance the understanding of the anti-thrombotic behavior of LIS-coated biomedical devices for future coating design. More broadly, enhanced interfacial mobility may be an important, underexplored mechanism for the anti-fouling behavior of surface coatings.
生物医学设备容易形成血栓(血栓形成),而注入液体的表面(LIS)在减少血栓反应方面非常有效。然而,支撑这种性能的机制,特别是润滑剂的作用,还不是很清楚。在这项工作中,研究了 LIS 作用的机制是否与以下因素有关:i)抑制因子 XII(FXII)的激活和接触途径;ii)减少表面形成的血栓中的纤维蛋白密度;iii)由于润滑剂的界面流动,增加表面上蛋白质或细胞的流动性。所选的 LIS 是通过化学气相沉积预先优化的,以在流动下保留润滑剂,将共价键合的全氟碳纳米结构层注入医用级全氟癸烷的薄膜(键合液体全氟碳)。结果表明,在没有外部流动的情况下,界面处的界面迁移率固有地更高,这使其成为 LIS 低血栓形成性的关键因素,因为 FXII 活性和纤维蛋白密度在界面处是等效的。这项研究的结果加深了对涂有 LIS 的生物医学设备的抗血栓行为的理解,为未来的涂层设计提供了参考。更广泛地说,增强的界面迁移率可能是表面涂层抗污染行为的一个重要但尚未充分探索的机制。