El-Aassar Mohamed R, Ibrahim Omar M, Hashem Fayza S, Ali Ahmed S M, Elzain Ahmed A, Mohamed Fathy M
Chemistry Department, College of Science, Jouf University, Sakaka 2014, Saudi Arabia.
Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
ACS Appl Bio Mater. 2022 Aug 30. doi: 10.1021/acsabm.2c00581.
We synthesized a stable, eco-friendly, and low-cost polyaniline@β-cyclodextrin (PANI@β-CD) nanocomposite via oxidative polymerization for phenol adsorption from water waste since phenol pollution is a global danger to human and animal health and the environment. The production of the composite and synergistic alteration of PANI with β-CD resulted in 66% reduction in particle size from 59 nm (PANI) to 20 nm (PANI@β-CD) as well as better phenol adsorption. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA) were used to analyze the produced PANI@β-CD nanocomposite. Our results show the optimum conditions for phenol adsorption: time (50 min), pH (8.0), nanosorbent dose (0.5 g), and the sorption isotherm fitted with Langmuir model; the monolayer adsorption capacity of the prepared PANI@β-CD for phenol was determined to be 8.56 mg g. The average pore size, total pore volume, and surface area of PANI/βCD nanocomposite are 15.62 nm, 0.1586 cm/g, and 90.901 m/g, respectively, for the pseudo second order model. Finally, modifying PANI nanoparticles with βCD allowed reusability up to four cycles with superior adsorption performance of ∼95% using (0.01 N) HNO.
由于苯酚污染对人类、动物健康和环境构成全球威胁,我们通过氧化聚合反应合成了一种稳定、环保且低成本的聚苯胺@β-环糊精(PANI@β-CD)纳米复合材料,用于从废水中吸附苯酚。该复合材料的制备以及聚苯胺与β-环糊精的协同改变导致粒径从59 nm(聚苯胺)降至20 nm(PANI@β-CD),减少了66%,同时对苯酚的吸附性能更好。利用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)、扫描电子显微镜(SEM)和热重分析(TGA)对制备的PANI@β-CD纳米复合材料进行了分析。我们的结果表明苯酚吸附的最佳条件为:时间(50分钟)、pH值(8.0)、纳米吸附剂剂量(0.5 g),吸附等温线符合朗缪尔模型;所制备的PANI@β-CD对苯酚的单层吸附容量测定为8.56 mg/g。对于准二级模型,PANI/βCD纳米复合材料的平均孔径、总孔体积和表面积分别为15.62 nm、0.1586 cm³/g和90.901 m²/g。最后,用β-环糊精修饰聚苯胺纳米颗粒可重复使用多达四个循环,使用(0.01 N)HNO₃时具有约95%的优异吸附性能。