School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China.
South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
Chemosphere. 2022 Dec;308(Pt 1):136246. doi: 10.1016/j.chemosphere.2022.136246. Epub 2022 Aug 28.
This study presents the comprehensive investigation for formation pathways of chloro-bromo-mixed products from the pyrolysis of polybrominated diphenyl ethers (PBDEs). In the study, a total of 23 PBDEs with bromination levels from mono-to deca-were selected. Each PBDE standard was sealed in the glass vial and then heated under 450 °C in the muffle furnace to simulate the pyrolysis process. The results demonstrated that PBDEs in the glass vials can unintentionally transform into chloro-bromo diphenyl ethers (PBCDEs) and dibenzo-p-dioxin and dibenzofurans (PBCDD/Fs) during the pyrolysis process. Atmosphere pressure gas chromatography (APGC) coupled with high-resolution mass spectrometry (HRMS) was used to identify these pyrolysis products, which demonstrated that all investigated nPBDEs (n represents the number of bromine substituents) can unintentionally transform into Cl-(n-1)BDEs, Cl-(n-2)BDEs, Cl-(n-1)BDFs, and Cl-(n-3)BDDs, while some nPBDEs can transform into Cl-(n-2)PBDD/Fs during pyrolysis. Experimental phenomena assisted with density functional theory (DFT) calculations reveal that Cl atom can substitute at C-Br rather than C-H, and Cl-(n-1)BDEs can be easily generated by Cl atom attacking at C-Br sites with low energy barriers (3.66-11.9 kcal/mol). In addition, nPBDEs with lower bromination levels are more favorable to generate Cl-(n-1)BDEs than those with higher bromination levels. Further DFT calculations suggest that PBDEs are preferentially first transformed into Cl-(n-1)BDEs, then subsequentially transform into PBCDD/Fs. We believe the results of this study can greatly improve our understanding of the transformation mechanism from PBDEs to cholo-bromo-mixed products in thermal treatment processes and provide new insight into controlling the emission of toxic cholo-bromo-mixed products.
本研究全面考察了多溴二苯醚(PBDEs)热解过程中氯溴混合产物的形成途径。研究中选择了溴化程度从单溴到十溴的 23 种 PBDEs。每个 PBDE 标准品均密封在玻璃小瓶中,然后在马弗炉中加热至 450°C,以模拟热解过程。结果表明,玻璃小瓶中的 PBDEs 在热解过程中会意外转化为氯溴二苯醚(PBCDEs)和二苯并对二恶英和呋喃(PBCDD/Fs)。大气压气相色谱(APGC)与高分辨率质谱(HRMS)联用,对这些热解产物进行了鉴定,结果表明,所有研究的 nPBDEs(n 代表溴取代基的数量)都会意外转化为 Cl-(n-1)BDEs、Cl-(n-2)BDEs、Cl-(n-1)BDFs 和 Cl-(n-3)BDDs,而一些 nPBDEs 在热解过程中会转化为 Cl-(n-2)PBDD/Fs。实验现象结合密度泛函理论(DFT)计算表明,Cl 原子可以取代 C-Br 而不是 C-H,Cl 原子以低能垒(3.66-11.9 kcal/mol)攻击 C-Br 位点,很容易生成 Cl-(n-1)BDEs。此外,溴化程度较低的 nPBDEs 比溴化程度较高的 nPBDEs 更容易生成 Cl-(n-1)BDEs。进一步的 DFT 计算表明,PBDEs 优先转化为 Cl-(n-1)BDEs,然后进一步转化为 PBCDD/Fs。我们相信,本研究的结果可以大大提高我们对热解过程中 PBDEs 向氯溴混合产物转化机制的理解,并为控制有毒氯溴混合产物的排放提供新的见解。