Deng Xiaohua, Gu Xianrui, Deng Yingjie, Jiang Zhu, Chen Wenxuan, Dang Dai, Lin Wei, Chi Bin
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China.
Research Institute of Petroleum Processing, Sinopec, No. 18, Xueyuan Road, Haidian District, Beijing 100083, China.
Nanoscale. 2022 Sep 22;14(36):13192-13203. doi: 10.1039/d2nr03918d.
The high overpotential of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) leading to slow air cathode kinetics is still a major challenge for zinc-air batteries (ZABs), hindering the commercialization of ZABs. With the advantages of cost-effectiveness and feasibility of synthesis at room temperature, zeolite imidazole frameworks (ZIFs) are regarded as advanced precursors. But a majority of ZIF-derived catalysts show only one catalytic activity, which limits their performance in ZABs as well as the cycling stability. In addition, molybdenum carbide (MoC) is recognized as an excellent candidate for renewable energy conversion due to its good chemical resistance and thermal stability. Herein, we report a ZIF-67-derived Co/MoC-NC multiphase doped carbon bifunctional ORR/OER catalyst with multiple active sites for the cathode of ZABs. The synergistic catalysis of Co nanoparticles and MoC nanoparticles in Co/MoC-NC which are embedded in a thin layer of N-doped graphitic carbon and immobilized on N-doped graphitic carbon, respectively, demonstrates superior ORR catalytic performance and durability both under alkaline and acidic conditions ( = 0.87 V in 1.0 M KOH and = 0.76 V in 0.5 M HSO). Simultaneously, Co/MoC-NC also exhibits favorable OER performance (10 mA cm, = 320 mV) in 1 M KOH. Furthermore, a remarkable peak-power density of 215.36 mW cm and great cycling stability could be achieved while applying Co/MoC-NC in the cathode of ZABs (over 300 h). This work will provide a viable design concept for designing and synthesizing multifunctional catalysts to construct rechargeable ZABs.
氧还原反应(ORR)和析氧反应(OER)的高过电位导致空气阴极动力学缓慢,这仍然是锌空气电池(ZAB)面临的主要挑战,阻碍了ZAB的商业化。由于具有成本效益和室温合成的可行性,沸石咪唑框架(ZIF)被视为先进的前驱体。但大多数ZIF衍生催化剂仅表现出一种催化活性,这限制了它们在ZAB中的性能以及循环稳定性。此外,碳化钼(MoC)因其良好的耐化学性和热稳定性而被认为是可再生能源转换的优秀候选材料。在此,我们报道了一种ZIF-67衍生的Co/MoC-NC多相掺杂碳双功能ORR/OER催化剂,用于ZAB的阴极,具有多个活性位点。Co/MoC-NC中分别嵌入在一层氮掺杂石墨碳中并固定在氮掺杂石墨碳上的Co纳米颗粒和MoC纳米颗粒的协同催化,在碱性和酸性条件下均表现出优异的ORR催化性能和耐久性(在1.0 M KOH中 = 0.87 V,在0.5 M HSO中 = 0.76 V)。同时,Co/MoC-NC在1 M KOH中也表现出良好的OER性能(10 mA cm, = 320 mV)。此外,在ZAB的阴极中应用Co/MoC-NC时,可以实现215.36 mW cm的显著峰值功率密度和出色的循环稳定性(超过300小时)。这项工作将为设计和合成多功能催化剂以构建可充电ZAB提供一个可行的设计概念。