Suppr超能文献

质体和胞质磷酸葡萄糖异构酶同工酶功能差异的结构基础。

A structural basis for the functional differences between the cytosolic and plastid phosphoglucose isomerase isozymes.

机构信息

Department of Clinical Laboratory, 7th Medical Center of Chinese PLA General Hospital, Beijing, China.

State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Beijing, China.

出版信息

PLoS One. 2022 Sep 1;17(9):e0272647. doi: 10.1371/journal.pone.0272647. eCollection 2022.

Abstract

Phosphoglucose isomerase (PGI) catalyzes the interconversion between glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P), thereby regulating sucrose synthesis in plant cells. In general, plants contain a pair of PGI isozymes located in two distinct compartments of the cell (cytosol and plastid) with differences in both the primary structure and the higher-order structure. Previously, we showed that the activity of cytosolic PGI (PGIc) is more robust (activity, thermal stability, substrate turnover rate, etc.) than that of the plastid counterpart (PGIp) in multiple organisms, including wheat, rice, and Arabidopsis. The crystal structures of apoTaPGIc (an isotype cytosol PGIc in Triticum aestivum), TaPGIc-G6P complex, and apoTaPGIp (an isotype plastid PGIp in Triticum aestivum) were first solved in higher plants, especially in crops. In this study, we detailed the structural characteristics related to the biochemical properties and functions of TaPGIs in different plant organelles. We found that the C-terminal domains (CTDs) of TaPGIc and TaPGIp are very different, which affects the stability of the dimerized enzyme, and that Lys213TaPGIc/Lys193TaPGIp and its surrounding residues at the binding pocket gateway may participate in the entrance and exit of substrates. Our findings provide a good example illuminating the evolution of proteins from primary to higher structures as a result of physical barriers and adaptation to the biochemical environment.

摘要

磷酸葡萄糖异构酶(PGI)催化葡萄糖-6-磷酸(G6P)和果糖-6-磷酸(F6P)之间的相互转化,从而调节植物细胞中的蔗糖合成。一般来说,植物含有一对位于细胞两个不同区室(细胞质和质体)中的 PGI 同工酶,它们在一级结构和高级结构上都存在差异。以前,我们表明,细胞质 PGI(PGIc)的活性(活性、热稳定性、底物周转率等)比多个生物体(包括小麦、水稻和拟南芥)中质体对应物(PGIp)更强。小麦属 TaPGIc(小麦属同工酶细胞质 PGIc)、TaPGIc-G6P 复合物和 TaPGIp(小麦属同工酶质体 PGIp)的apo 形式的晶体结构首先在高等植物中得到解决,特别是在作物中。在这项研究中,我们详细描述了与 TaPGIs 在不同植物细胞器中的生化特性和功能相关的结构特征。我们发现 TaPGIc 和 TaPGIp 的 C 末端结构域(CTDs)非常不同,这影响了酶二聚体的稳定性,并且 TaPGIc 的 Lys213 和 TaPGIp 的 Lys193 及其周围结合口袋入口处的残基可能参与了底物的进入和退出。我们的发现为蛋白质从一级结构到高级结构的进化提供了一个很好的例子,这是由于物理障碍和对生化环境的适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f1e/9436075/ee3244184d91/pone.0272647.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验