Suppr超能文献

气体放电 - 半导体系统中庞加莱混沌的δ同步

Delta synchronization of Poincaré chaos in gas discharge-semiconductor systems.

作者信息

Akhmet Marat, Başkan Kaǧan, Yeşil Cihan

机构信息

Middle East Technical University, Department of Mathematics, Dumlupinar Boulevard, Ankara 06800, Turkey.

Middle East Technical University, Department of Physics, Dumlupinar Boulevard, Ankara 06800, Turkey.

出版信息

Chaos. 2022 Aug;32(8):083137. doi: 10.1063/5.0103132.

Abstract

We introduce a new type of chaos synchronization, specifically the delta synchronization of Poincaré chaos. The method is demonstrated for the irregular dynamics in coupled gas discharge-semiconductor systems (GDSSs). It is remarkable that the processes are not generally synchronized. Our approach entirely relies on ingredients of the Poincaré chaos, which in its own turn is a consequence of the unpredictability in Poisson stable motions. The drive and response systems are in the connection, such that the latter is processed through the electric potential of the former. The absence of generalized synchronization between these systems is indicated by utilizing the conservative auxiliary system. However, the existence of common sequences of moments for finite convergence and separation confirms the delta synchronization. This can be useful for complex dynamics generation and control in electromagnetic devices. A bifurcation diagram is constructed to separate stable stationary solutions from non-trivial oscillatory ones. Phase portraits of the drive and response systems for a specific regime are provided. The results of the sequential test application to indicate the unpredictability and the delta synchronization of chaos are demonstrated in tables. The computations of the dynamical characteristics for GDSSs are carried out by using COMSOL Multiphysics version 5.6 and MATLAB version R2021b.

摘要

我们引入了一种新型的混沌同步,具体而言是庞加莱混沌的δ同步。该方法在耦合气体放电 - 半导体系统(GDSSs)的不规则动力学中得到了验证。值得注意的是,这些过程通常并不同步。我们的方法完全依赖于庞加莱混沌的要素,而庞加莱混沌本身又是泊松稳定运动中不可预测性的结果。驱动系统和响应系统相互连接,使得响应系统通过驱动系统的电势进行处理。利用保守辅助系统表明了这些系统之间不存在广义同步。然而,有限收敛和分离的共同时刻序列的存在证实了δ同步。这对于电磁装置中的复杂动力学生成和控制可能是有用的。构建了一个分岔图以区分稳定的静态解和非平凡的振荡解。给出了特定状态下驱动系统和响应系统的相图。表格展示了用于表明混沌的不可预测性和δ同步的顺序测试应用结果。GDSSs动力学特性的计算是使用COMSOL Multiphysics 5.6版本和MATLAB R2021b版本进行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验