Suppr超能文献

4D XCAT 体模中可扩展的淋巴系统的发展:在淋巴瘤 PET 分割的定量评估中的应用。

Development of scalable lymphatic system in the 4D XCAT phantom: Application to quantitative evaluation of lymphoma PET segmentations.

机构信息

Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada.

Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Med Phys. 2022 Nov;49(11):6871-6884. doi: 10.1002/mp.15963. Epub 2022 Sep 18.

Abstract

BACKGROUND

Digital anthropomorphic phantoms, such as the 4D extended cardiac-torso (XCAT) phantom, are actively used to develop, optimize, and evaluate a variety of imaging applications, allowing for realistic patient modeling and knowledge of ground truth. The XCAT phantom defines the activity and attenuation for a simulated patient, which includes a complete set of organs, muscle, bone, and soft tissue, while also accounting for cardiac and respiratory motion. However, the XCAT phantom does not currently include the lymphatic system, critical for evaluating medical imaging tasks such as sentinel node detection, node density measurement, and radiation dosimetry.

PURPOSE

In this study, we aimed to develop a scalable lymphatic system in the XCAT phantom, to facilitate improved research of the lymphatic system in medical imaging. Using this scalable lymphatic system, we modeled the lymph node conglomerate pathology that is characteristically observed in primary mediastinal B-cell lymphoma (PMBCL). As an extended application, we evaluated positron emission tomography (PET) image quantification of metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of these simulated lymphomas, though the phantoms may be applied to other imaging modalities and study design paradigms (e.g., image quality, detection).

METHODS

A template model for the lymphatic system was developed based on anatomical data from the Visible Human Project of the National Library of Medicine. The segmented nodes and vessels were fit with non-uniform rational basis spline surfaces, and multichannel large deformation diffeomorphic metric mapping was used to propagate the template to different XCAT anatomies. To model conglomerates observed in PMBCL, lymph nodes were enlarged, converged within the mediastinum, and tracer concentration was increased. We used the phantoms as inputs to a PET simulation tool, which generated images using ordered subsets expectation maximization reconstruction with 2-8 mm Gaussian filters. Fixed thresholding (FT) and gradient segmentation were used to determine MTV and TLG. Percent bias (%Bias) and coefficient of variation (COV) were computed as measures of accuracy and precision, respectively, for each MTV and TLG measurement.

RESULTS

Using the methodology described above, we introduced a scalable lymphatic system in the XCAT phantom, which allows for the radioactivity and attenuation ground truth to be generated in 116 ± 2.5 s using a 2.3 GHz processor. Within the Rhinoceros interface, lymph node anatomy and function were modified to create a cohort of 10 phantoms with lymph node conglomerates. Using the lymphoma phantoms to evaluate PET quantification of MTV, mean %Bias values were -9.3%, -41.3%, and 20.9%, while COV values were 4.08%, 7.6%, and 3.4% using 25% FT, 40% FT, and gradient segmentations, respectively. Comparatively for TLG, mean %Bias values were -27.4%, -45.8%, and -16.0%, while COV values were 1.9%, 5.7%, and 1.4%, for the 25% FT, 40% FT, and gradient segmentations, respectively.

CONCLUSIONS

In this work, we upgraded the XCAT phantom to include a lymphatic system, comprised of a network of 276 scalable lymph nodes and corresponding vessels. As an application, we created a cohort of phantoms with lymph node conglomerates to evaluate lymphoma quantification in PET imaging, which highlights an important application of this work.

摘要

背景

数字拟人化体模,如 4D 扩展心肺体模(XCAT),被广泛用于开发、优化和评估各种成像应用,实现逼真的患者建模和真实情况的了解。XCAT 体模定义了模拟患者的活动和衰减,其中包括完整的器官、肌肉、骨骼和软组织,同时还考虑了心脏和呼吸运动。然而,XCAT 体模目前并不包括淋巴系统,而淋巴系统对于评估诸如前哨淋巴结检测、淋巴结密度测量和辐射剂量测定等医学成像任务至关重要。

目的

本研究旨在 XCAT 体模中开发可扩展的淋巴系统,以促进医学成像中淋巴系统的研究。利用这个可扩展的淋巴系统,我们构建了典型原发性纵隔 B 细胞淋巴瘤(PMBCL)中淋巴结聚集体的病理模型。作为扩展应用,我们评估了模拟这些淋巴瘤的正电子发射断层扫描(PET)图像中代谢肿瘤体积(MTV)和总病变糖酵解(TLG)的定量,尽管这些体模可应用于其他成像模式和研究设计范例(例如,图像质量、检测)。

方法

根据美国国家医学图书馆可视人体计划的解剖学数据,开发了淋巴系统模板模型。分割后的淋巴结和血管采用非均匀有理 B 样条曲面拟合,多通道大变形差分同胚度量映射用于将模板传播到不同的 XCAT 解剖结构中。为了模拟 PMBCL 中观察到的聚集体,我们增大了淋巴结的大小,使其在纵隔内聚集,并增加了示踪剂浓度。我们将体模作为 PET 模拟工具的输入,该工具使用有序子集期望最大化重建算法,采用 2-8mm 的高斯滤波器生成图像。采用固定阈值(FT)和梯度分割方法来确定 MTV 和 TLG。分别采用百分偏差(% Bias)和变异系数(COV)作为 MTV 和 TLG 测量的准确性和精密度的度量。

结果

通过使用上述方法,我们在 XCAT 体模中引入了可扩展的淋巴系统,使用 2.3GHz 处理器在 116±2.5s 内生成放射性和衰减的真实值。在 Rhino 界面中,修改了淋巴结解剖结构和功能,以创建 10 个具有淋巴结聚集体的体模。使用淋巴瘤体模评估 MTV 的 PET 定量,使用 25%FT、40%FT 和梯度分割的平均 % Bias 值分别为-9.3%、-41.3%和 20.9%,COV 值分别为 4.08%、7.6%和 3.4%。对于 TLG,使用 25%FT、40%FT 和梯度分割的平均 % Bias 值分别为-27.4%、-45.8%和-16.0%,COV 值分别为 1.9%、5.7%和 1.4%。

结论

本研究在 XCAT 体模中升级了淋巴系统,包含一个由 276 个可扩展淋巴结和相应血管组成的网络。作为一个应用,我们创建了一个具有淋巴结聚集体的体模队列,用于评估 PET 成像中的淋巴瘤定量,这突出了这项工作的一个重要应用。

相似文献

3
A set of 4D pediatric XCAT reference phantoms for multimodality research.
Med Phys. 2014 Mar;41(3):033701. doi: 10.1118/1.4864238.
6
4D XCAT phantom for multimodality imaging research.
Med Phys. 2010 Sep;37(9):4902-15. doi: 10.1118/1.3480985.
9
Realistic CT simulation using the 4D XCAT phantom.
Med Phys. 2008 Aug;35(8):3800-8. doi: 10.1118/1.2955743.
10
4D numerical observer for lesion detection in respiratory-gated PET.
Med Phys. 2014 Oct;41(10):102504. doi: 10.1118/1.4895975.

本文引用的文献

1
Primary mediastinal large B-cell lymphoma.
Blood. 2022 Sep 1;140(9):955-970. doi: 10.1182/blood.2020008376.
2
VIRTUAL CLINICAL TRIALS IN MEDICAL IMAGING SYSTEM EVALUATION AND OPTIMISATION.
Radiat Prot Dosimetry. 2021 Oct 12;195(3-4):363-371. doi: 10.1093/rpd/ncab080.
3
Complete populations of virtual patients for in silico clinical trials.
Bioinformatics. 2021 Apr 1;36(22-23):5465-5472. doi: 10.1093/bioinformatics/btaa1026.
7
Virtual clinical trials in medical imaging: a review.
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.
8
PET segmentation of bulky tumors: Strategies and workflows to improve inter-observer variability.
PLoS One. 2020 Mar 30;15(3):e0230901. doi: 10.1371/journal.pone.0230901. eCollection 2020.
9
Trends in Use of Medical Imaging in US Health Care Systems and in Ontario, Canada, 2000-2016.
JAMA. 2019 Sep 3;322(9):843-856. doi: 10.1001/jama.2019.11456.
10
Front-Line Treatment of High Grade B Cell Non-Hodgkin Lymphoma.
Curr Hematol Malig Rep. 2019 Aug;14(4):207-218. doi: 10.1007/s11899-019-00518-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验