Zhang Boxue, Gao Deyu, Li Mengjia, Shang Xueni, Li Ying, Chen Cong, Pauporté Thierry
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
CNRS, Institut de Recherche de Chimie Paris (IRCP), UMR8247, Chimie ParisTech, PSL Research University, 11 rue P. et M. Curie, F-75005 Paris, France.
ACS Appl Mater Interfaces. 2022 Sep 14;14(36):40902-40912. doi: 10.1021/acsami.2c09926. Epub 2022 Sep 2.
The optical properties and stability of metal halide perovskites can be improved by reducing their dimensionality. Because defects at the perovskite film grain body and boundaries cause significant energetic losses by nonradiative recombination, perovskite films with manageable crystal size and macroscopic grains are essential to improve the photovoltaic properties. Through theoretical calculation models and experiments, we show that the carboxyl group of 4-ammonium butyric acid-based cation (4-ABA) can interact with the three-dimensional (3D) perovskite to produce a secondary grain growth by post-treatment. It passivates the trap defects and broadens the light absorption. 4-ABA could induce a 2D capping layer on top of 3D mixed cation-based perovskite to construct a 2D/3D heterojunction. The 4-ABA-modified perovskite film consists of large-sized grains with extremely low trap state densities and possesses a longer charge carrier lifetime and good stability, resulting in efficient perovskite solar cells with a champion efficiency of 23.16% and a of 1.20 V. We show that the 4-ABA-treated devices outperform the 3-ammonium propionic acid (3-APA)- and 5-ammonium valeric acid (5-AVA)-treated ones. Moreover, the devices exhibit high stability under high humidity and continuous light soaking conditions. This work gives a hint that our approach based on 4-ABA treatment is key to achieving better electrical properties, a controlled crystal growth, and highly stable perovskite solar cells.
通过降低金属卤化物钙钛矿的维度,可以改善其光学性质和稳定性。由于钙钛矿薄膜晶粒内部和边界处的缺陷会因非辐射复合导致显著的能量损失,因此具有可控晶体尺寸和宏观晶粒的钙钛矿薄膜对于改善光伏性能至关重要。通过理论计算模型和实验,我们表明基于4-氨基丁酸的阳离子(4-ABA)的羧基可以与三维(3D)钙钛矿相互作用,通过后处理产生二次晶粒生长。它钝化了陷阱缺陷并拓宽了光吸收。4-ABA可以在基于3D混合阳离子的钙钛矿顶部诱导形成二维封盖层,以构建二维/三维异质结。4-ABA修饰的钙钛矿薄膜由具有极低陷阱态密度的大尺寸晶粒组成,具有更长的电荷载流子寿命和良好的稳定性,从而得到了冠军效率为23.16%、开路电压为1.20 V的高效钙钛矿太阳能电池。我们表明,经4-ABA处理的器件性能优于经3-氨基丙酸(3-APA)和5-氨基戊酸(5-AVA)处理的器件。此外,这些器件在高湿度和连续光照条件下表现出高稳定性。这项工作表明,我们基于4-ABA处理的方法是实现更好的电学性能、可控晶体生长和高度稳定的钙钛矿太阳能电池的关键。