Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China.
Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
Andrology. 2022 Nov;10(8):1644-1659. doi: 10.1111/andr.13288. Epub 2022 Sep 13.
In the testis, spermatocytes and spermatids rely on lactate produced by Sertoli cells (SCs) as energy source. Transforming growth factor-beta 3 (TGF-β3) is one of the generally accepted paracrine regulatory factors of SC-created blood-testis barrier (BTB), yet its role in SC glycolysis and lactate production still remains unclear.
To investigate the effect of TGF-β3 on glycolysis and lactate production in SCs and determine the role of lethal giant larvae 2 (Lgl2) and Notch signaling activity during this process.
Primary cultured rat SCs and TM4 cells were treated with different concentrations of TGF-β3. In some experiments, cells were transfected with siRNA specifically targeting Lgl2 and then treated with TGF-β3 or N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester. Lactate concentration, glucose and glutamine (Gln) consumption in the culture medium, activity of phosphofructokinase (PFK), lactate dehydrogenase (LDH), and glutaminase (Gls), ATP level, oxygen consumption, extracellular acidification, and mitochondrial respiration complex activity were detected using commercial kits. The protein level of Lgl2, LDH, monocarboxylate transporter 4 (MCT4), and activity of Akt, ERK, p38 MAPK, and Notch pathway were detected by Western blot. The stage-specific expression of Jagged1 was examined by immunohistochemistry (IHC) and qPCR after laser capture microdissection. Spermatogenesis in rat testis injected with recombinant Jagged1 (re-Jagged1) was observed by HE staining, and lactate concentration in testis lysate was measured at a different day point after re-Jagged1 treatment.
Significant enhancement of lactate concentration was detected in a culture medium of both primary SCs and TM4 cells treated with TGF-β3 at 3 or 5 ng/ml. Besides, other parameters of glycolysis, that is, glucose and Gln consumption, enzyme activity of PFK, LDH, and Gls displayed different levels of increment in primary SCs and TM4 cells after TGF-β3 treatment. Mitochondria respiration of SCs was shown to decrease in response to TGF-β3. Lgl2, MCT4, activity of ERK, and p38 MAPK were up-regulated, whereas Akt and Notch pathway activity were inhibited by TGF-β3. Silencing of Lgl2 in SCs affected lactate production and attenuated the previous effects of TGF-β3 on SC glycolysis except for Gln consumption, Gls activity, and activity of Akt, ERK, and p38. N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment in SCs antagonized glycolysis suppression caused by Lgl2-silencing. In vivo analysis revealed a stage-specific expression of Jagged1 in contrary with TGF-β3. Activating Notch signaling by re-Jagged1 resulted in restorable hypospermatogenesis and lowered lactate level in rat testis.
TGF-β3 induces lactate production in SC through up-regulating Lgl2, which weakened the Notch signaling activity and intensified glycolysis in SCs. Thus, besides the known function of TGF-β3 as the BTB regulator, TGF-β3-Lgl2-Notch may be considered an important pathway controlling SC glycolysis and spermatogenesis.
在睾丸中,精母细胞和精细胞依赖于支持细胞(SCs)产生的乳酸作为能量来源。转化生长因子-β3(TGF-β3)是公认的 SC 构建血睾屏障(BTB)的旁分泌调节因子之一,但它在 SC 糖酵解和乳酸产生中的作用仍不清楚。
研究 TGF-β3 对 SC 糖酵解和乳酸产生的影响,并确定 lethal giant larvae 2(Lgl2)和 Notch 信号活性在这一过程中的作用。
用不同浓度的 TGF-β3 处理原代培养的大鼠 SC 和 TM4 细胞。在某些实验中,用特异性靶向 Lgl2 的 siRNA 转染细胞,然后用 TGF-β3 或 N-[N-(3,5-二氟苯乙酰基)-l-丙氨酸]-S-苯甘氨酸叔丁酯处理。使用商业试剂盒检测培养基中乳酸浓度、葡萄糖和谷氨酰胺(Gln)消耗、磷酸果糖激酶(PFK)、乳酸脱氢酶(LDH)和谷氨酰胺酶(Gls)活性、ATP 水平、耗氧量、细胞外酸化和线粒体呼吸复合物活性。通过 Western blot 检测 Lgl2、LDH、单羧酸转运蛋白 4(MCT4)和 Akt、ERK、p38 MAPK 和 Notch 通路活性的蛋白水平。用激光捕获微切割后免疫组化(IHC)和 qPCR 检测 Jagged1 的特异性表达。用 HE 染色观察大鼠睾丸中重组 Jagged1(re-Jagged1)注射后的生精情况,并在 re-Jagged1 处理后不同时间点测量睾丸裂解液中的乳酸浓度。
在 3 或 5ng/ml TGF-β3 处理的原代 SC 和 TM4 细胞的培养基中,均检测到乳酸浓度显著升高。此外,在 TGF-β3 处理后,原代 SC 和 TM4 细胞的糖酵解其他参数,即葡萄糖和 Gln 消耗、PFK、LDH 和 Gls 酶活性也呈现不同程度的增加。SC 的线粒体呼吸显示出对 TGF-β3 的反应性降低。Lgl2、MCT4、ERK 和 p38 MAPK 的活性上调,而 Akt 和 Notch 通路的活性受到抑制。SC 中的 Lgl2 沉默影响乳酸产生,并减弱 TGF-β3 对 SC 糖酵解的先前作用,除了 Gln 消耗、Gls 活性和 Akt、ERK 和 p38 的活性。SC 中的 N-[N-(3,5-二氟苯乙酰基)-l-丙氨酸]-S-苯甘氨酸叔丁酯(DAPT)处理拮抗了 Lgl2 沉默引起的糖酵解抑制。体内分析显示 Jagged1 的表达具有特定的阶段性,与 TGF-β3 相反。通过再 Jagged1 激活 Notch 信号导致大鼠睾丸中可恢复的精子发生减少和乳酸水平降低。
TGF-β3 通过上调 Lgl2 诱导 SC 产生乳酸,从而减弱 Notch 信号活性并增强 SC 中的糖酵解。因此,除了 TGF-β3 作为 BTB 调节剂的已知功能外,TGF-β3-Lgl2 Notch 可能被认为是控制 SC 糖酵解和精子发生的重要途径。